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PREFACE

At present a wide range of problems related to various branches of physics
and engineering are solved by probability methods. Naturally, nodetailed exposition
of all the multitudinous applications of probability theory and mathematical statistics
to various physical and engineering problems can be included within the scope of
one book. For the small monograph hereby presented to the reader a much smaller
range was chosen: the theory of electrical and mechanical systems with lumped
constants under a statistically characterized external force.

The material is arranged in the following manner. After the first chapter
which is of introductory nature, the princirles of the theory of random functions and
their linear transformations are given in brief. This mathematical material, sub-
sequently required, constitutes the second chapter.

On the basis of relationships obtained in Chapter Two, the third chapter deals
with the general methods of analysis of random processes in linear systems with
lumped constants. Beside the generally accepted spectral method, the method of
stochastic differential equations and the method of impulse characteristicsare des-
cribed here in sufficient detail.

The equations given in this chapter for each of the three methods mentioned
are applicable not only to systems with one input and one output, but also to the
most general problem of random action upon a linear system which has several in-
puts and outputs, Several problems are then examined by way of illustration.
These problems are solved by each of the three methods, thus affording their
comparison,

In Chapter Four the application of the methods of Chapter Three to a wider
range of problems is shown (the Brownian movement, electric fluctuations, ther-
mal movement of a galvanometer, transmission of telegraph signals and fluctuation
noise through a low-pass filter, elements of the theory of optimal systems). The
results obtained here should in no case be considered as exhaustive. ‘The author
has only desired to show with the aid of these examples the diversity of possible
problems relating to random action upon a linear system and to further exemplify
the general methods.

Chapter Five contains mainly the theory of inertialess nonlinear systems under
random action,for which such general relationships have been obtained which make
it possible to carry out calculations in all cases metwithinpractice, The hitherto
little-developed theory of random processes in inertial nonlinear systems is briefly
surveyed in a separate section,

In Chapter Sixa series of practical examples is given which illustrate the meth-
ods of Chapter Five,

In the course of writing this book, the author has endeavored to confine him-
self as far as possible to the higher mathematics course given in technical institutes.,
Only elementary notions of the theory of probability and operational calculus are



required of the reader. These notions can, if necessary, be easily obtained from
existing specialized literature. The author has consciousiy allowed some instances
of lack of mathematical rigor in computations. Refraining from excessive mathe-
matical rigor makes it possible to substantially simplify the exposition and, at the
same time, in the overwhelming majority of practical cases, it doesnotimpose any
restriction on the applicability of results obtained. The author assumes that some
readers will easily notice and supply these deficiencies in rigor while others will
readily accept them.

In conclusion the author considers it his pleasant du'y to express his gratitude
to the critics Prof. S.M, Rytov and Dr. of Phys. Math. 3ciences Yaglom for a
number of valuable critical remarks, and the editor, Candidate Phys. Math. Sc.
A.l. Kostienko,for careful preparation of manuscripts for the press.



Chapter One

GENERAL CONCEPTS OF RANDOM PROCESSES

§1. Dynamical and Statistical Laws

Any phenomenon occuring in nature is bound up with an infinite set of
other phenomena. Choosing any such phenomenon as subject of study, we find that
among these connections there are essential ones, which determine the basic
features of the phenomenon under study, but there are also nonessentialones, which affect
only some secondary features. In studying the phenomenon it is necessary to find
out and take into account all the essential connections and simultaneously to disre-
gard nonessential details caused by subsidiary connections. Thus, notthe veryphe-
nomenon in all its complexity is subject to analysis, but a simplified model of it,
whose behavior coincides basically with the behavior of the subject of our study in
all but minor and nonessential details.

The study of the model constructed leads to the setting up of some laws. Only
the abstract model of the phenomenon follows these laws. However, if the schema-
tization of the latter has been carried out properly, the laws also describe
the basic features of the phenomenon studied. Thus the criterion of correctness of
a model adopted in some theory is the agreement between theoretical results and
practical, experimental data.

The model of the phenomenon, later to be analyzed, should be con-
structed on the basis of making explicit its connections with other phenomena. Here
the suhbdivision of factors into essential and nonessential ones depends notonlyon
the specific nature of the phenomenon itself, but also on the problems that the
theory will have to solve.

At present a great many schemes of physical phenomena are known, in which
for definite external forces, the system's behavior is fully determined by its
initial state., Such are, for instance, the free fall of a body in a gravitational
field; the two- and many-body problem well known in celestial mechanics; an
electric circult with constant parameters under given excitation, etc. The
laws which apply to schemes of this sort are known as dynamical. These laws are
characteristic of a unique specification of the consequences of a given causes.

Beside models of phenomena which lead to the setting up of dynamical
laws, other well-known models lead to the formulation of laws of a different
nature -- statistical laws. To clarify this concept, let us consider as an example
the model employed in the kinetic theory of gases.

The kinetic theory of gases deals with such parameters of the gas as pressure,
temperature, viscosity, specific heat and others, These parameters characterize
the gas as a whole and are determined by the combined action of all its molecules,

A gas in an assembly of a great many molecules. In collective phenomena of
thermal motion of a gas, the individual features of the behavior of its separate



particles are obliterated and the parameters mentioned are mainly of a statis-
tical nature, i.e., are obtained as a result of averaging the effects of the indi-
vidual particles. Therefore, the kinetic theory of gases can be constructed only
on the basis of a statistical model of a gas, a model that ailows to formulate suitable
statistical laws.

At the basis of the classical kinetic theory of gases lies the following model.
A vessel of .arbitrary shape contains a given number of gas molecules
of definite mass. Each molecule is regarded as an ent.rely free body
not acted upon by gravity and by other molecules (otherwise than by colli-
sion with them). In the interval between collisions wit1 other molecules or with
the walls of the vessel each molecule moves in a straight line, The change of di-
rection in collisions follows the laws of collision of elastic ipheres, The initial
state of the molecules is statistically characterized: their root-mean-square
velocity is given and it is assumed that each molecule can with equal probability
be at any point in the space enclosed by the vessel and have any direction of the
velocity vector,

Side by side with the described statistical model of a gas, a dynamical model
of it can also be constructed. For this it is necessary to consider a vessel of a
given shape instead of an arbitrary one and also to indicate¢ the positions and velo-
city vectors of all molecules at a given initial time momert.

Provided that we have at our disposal unlimited conputational means,
we can apply the laws of mechanics to the above-menticned dynamical model
and compute the trajectory of each molecule for a time interval of arbitrary du-
ration. However, the computational difficulties connected with the solution of such
a problem are practically insurmountable. This becomes osbvious if we consider
that one cubic centimeter of gas at normal pressure and temperature 0°C contains

approximately 3 - 1019 molecules, the number of collisions of each being of

the order of 109 per second. The impossibility of carryins out the necessary com-
putational work shows the infeasibility of the dynamical riodel.

Yet another, more serious deficiency of fundamental nature affects
the dynamical model in this problem. Actually the beh: vior of an individual
molecule does not make it possible to draw any conclusion; about the properties of
the gas as a whole, whilst these are the very properties w th which the kinetic theory
is concerned. Consequently, in this case the dynamical model is in principle
unsuitable for establishing the laws in which we are int:rested.

In the case examined, the statistical approach is necz2ssitated by the fact that
a very large number of particles participate in the phenomznon. We shall show an-
other example in whichthe statisticaltreatment is expedient, but where the collective
character of the phenomenon is somewhat different. This :xample refers to radio-
reception in the presence of random interference.

If the form of the interference acting at the time wh2n useful signals are
transmitted is known, then, knowing the construction and parameters of the radio-
receiver, one can always calculate with more or less labo - the distortion of the use-
ful signals by the interference. However, the results thus obtained are of no essen-~
tial value for the theory of radio reception, since they are related to the particular
case at hand and do not make it possible to draw genera: conclusions about the
effectiveness of any given radio-receiving apparatus.

In contrast, the statistical approach to the proble n makes it possible to
establish what distortions appear on the average (e.g., the average number of dis-
torted telegraph signs) for a given interference level. This makes it possible to



get an idea of the quality of the radio-reception method applied. Herethe collective
character of the phenomenon lies in that the interference effects are investi-
gated for recurrent reception conditions, which on the average show no varia-
tion.

The following conclusions can be drawn from the foregoing. If the course of
the physical phenomenon is mainly determined by a small number of principal cau-
ses (necessary events), thenthe dynamicalmodelis the one most suitable for its
study. Besides necessary events, we encounter other physical phenomena whose
basic features are determined by an exceedingly great number of factors which are
on the average of approximately equal effect {(random events), We stress that a
random effect is just as causally determined as a certain event, but it differs
from the latter in the character of its causes.

It is impossible to construct a dynamical model of a random phenomenon,
to establish the laws which govern the individual random event, or to make an
even rough prediction of its course.

The laws of random phenomena are revealed by the observation of a great
number of events taking place under similar conditions or by their multiple
recurrence. These laws are qualitatively different from the laws which govern the
individual event. Theyare statisticalandare studied with the aid of probability models
of these events.

§2. Random Processes

The random events studied by the classical theory of probability are events
which can either occur or not occur when a certain complex of conditions is realized.
Such are, for instance, the obtaining of a given number of points in casting dice, the
emissionof a given elementary particle in a given time interval by a radioactive atom,
the distortion of an individual telegraph sign by the random interference in the
communication channel, etc. The development of physics and engineering has
made it necessary to study phenomena of a different type-the random events
continuing in time, or, in other words, random processes,

One of the first random processes studied byphysicists was the Brownian move-
ment, i.e., the movement of minute particles suspended in a liquid or gas, discover-
ed in the year 1827 by the English botanist Brown. At the beginning of the twentieth
century, simultaneously with the elaboration of the theory of the Brownian move-
ment, the study of random voltages and currents in electric circuits resulting from
thermal agitation in their elements was begun. In the nineteen-twenties these in-
vestigations were extended to circuits with electronic tubes.

In all the examples mentioned, the random process was the result of thermal
movement of matter. However, it is easy to indicate a great number of random pro-
cesses caused by quite different factors. Such are, for instance, earth displace-
ments in quakes, ships rolling on rough sea, vibration of vehicles in motion on an
uneven road, acoustic noise, time variation of meteorological factors, variations
in the load on a mains network supplying many consumers, etc.

The first steps in the theory of random processes, dating back to the begin-
ning of the twentieth century,are typical of the fact that for each problem encountered
a specific method of solution was evolved, suitable only for the given problem or a
narrow circle of related problems. The general theory of random procesaes ap-
peared much later. Its foundations were laid by the works of the Soviet mathema-
ticians A. M. Kolmogorov and A. Ya. Khinchin published in the nineteen-thirties.



The problems dealt with by the theory of random pro« esses can be subdivided
into two major groups. The first group contains the probl¢ ms connected with the
mechanism by which the random processes are produced. Although some general
methods of investigating the problems of this group can be indicated, the
specific physical content of each problem generally shows through.

The second group contains problems relating to randcm influence upon sys-
tems of various physical nature. Here dynamic analogies exist which make it pos-
sible to describe phenomena widely divergent in their nature, (mechanical, electri-
cal, acoustic phenomena) with the aid of a standard mathematical apparatus, These
analogies make thisfieldof the theory of random processes similar in character to
the theory of oscillations which studies oscillatory process:s in various branches
of physics and engineering from a common point of view.

The present work examines problems of the second group only, l.e., the
behavior of various systems under given random influences is studied. The mec-
anism by which these influences are produced is not examined in detail.

§3. The Role of the Theory of Random Processes in Engineering

The installations, apparatus and devices of modern engineering are systems
functioning under some external forces, This applies eq 1ally totheir assemblies
and elements. Examples are: a bridge subjected to the lo:d of vehicles and pedes-
trians, apparatus under electric tension, the rope of liftin; gear subjected to
strain, and many others. In accordance with §1 the analysis of phenomena in the
systems mentioned is preceded by schematization of the obje ct of study. This sche-
matization should be applied to the properties of the system and to the properties
of the external influence [input].

The methods of constructing schematized models of reral systems are outside
the scope of the problems dealt with in this book. We shall, therefore, dwell only
on methods of schematizing external forces.

The majority of engineering apparatus is intended for repeated use under si-
milar working conditions. Therefore, their behavior is stulied under external
influences of a known character, determined by these conditions.

Similar though they might be, operating conditions :re never identical.
The same can be said of the external forces., The problem of schematization
lies in that, that all essential properties and peculiartities of the input should
be considered while disregarding all its secondary features. Depending on the
character of the input, dynamic schematization i8 more convenient in some
cases, and statistical in others.

Dynamic schematization of the input is its representat on by some well-
defined function of the time, whose form is established by analyzing the work-
ing conditions. Such idealization is expedient when the forri of the input varies
only inconsiderably from case to case. Let us give one :xample. The alternat-
ing voltage of the mains network, to which the device investigated is connected
does not have a strictly constant amplitude, frequency and fcrm. However, in most
cases, this voltage can be successfuly idealized, and be considered sinusoidal, having
well-defined amplitude and frequency.

It is rational to use the statistical schematization of an input, i.e., to
consider it as if it were some random process, for which th:: investigation of the
operating conditions gives only probability characteristics, when a great variety
of essentially different forms of input occurs.



Some such inputs are readily perceived in the examples of the preceding sec-
tion. We shall supplement them by one additional example, where dynamic schema-
tization of the input is possible, but the statistical one is more appropriate.

Until recently, in communication engineering, when analyzing some apparatus
or its individual elements, the signals transmitted along the channel were regarded
as determinate time functions of a certain form (dynamic schematization). Such an
approach to the problem is only the first approximation to reality. The point is that
any definite time function transmitted through the channel in a given interval consti-
tutes but one of the possible variants of the signal. The communication apparatus
should be designed for all the possible variants of a signal.

In most cases the number of possible varianta of the signal is so great that
any attempt at a simultaneous or successive consideration of all of them is exceed-
ingly difficult., The situation becomes even more aggravated by the fact that noise
of extremely irregular character is superimposed upon the signal in the communica-
tion channel. Hence follows naturally the conclusion that it is more expedient to re-
gard the signal transmitted through the communication channel as a random process,
i.e., to apply a statistical schematization.

The examination of the external forces on various engineering apparatus shows
that in many cases the statistical schematization represents more closely their pro-
perties than does dynamic schematization. The same applies to many problems of
the theory of communication and automatic control, the theory of recording devices,
the theory of vibration, shocks and rolling experienced by structures, vehicles,
vessels and airplanes, and to many other cases. The statistical approach to such
problems is not yet widely used, mainly owing to its comparative novelty and to the
related fact that the statistical properties of various random actions are not well
known. This latter fact has also influenced the contents of this monograph, limiting
the variety of specific technical examples analyzed in it.



Chapter Two

RANDOM FUNCTIONS AND THEIR LINEAR TRANSFORMATIONS

§4. The Concept of Random Function

The mathematical image of a physical random process is the random func-
tion. Our exposition of the theory of random processes in linear physical systems
is therefore headed by the present chapter, in which we state the basic properties
of random functions and their linear transformations.

The random process gives in each of a great number of experiments, carried
out under similar conditions, a time function f (t), where k is the number of the
corresponding experiment. In the course of an individual experiment, a well-de-
fined value of fik(t) corresponds to each value of the argument t. Thus fy(t) is a de-
terminate function. It is called the realization of the randcm process f(t) in the k-th
experiment. The random nature of the process is manifested by the fact that the
form of the functicn fy(t) varies at random from experimen: to experiment. To
characterize the random process it is necessary to indicate all its possible realiza-
tions and their probabilities,

In the mathematical theory of random processes the fsllowing more rigorous
formulation of the aforesaid follows from the concepts developed by A. N. Kolmogorov
{1/ in his axiomatic construction of the theory of probability: the random function
f(t) is defined if a probability measure is given on the set o: its realizations.

Thus, the random function is a function of two variab.es: the time t and the
parameter k, enumerating all the possible realizations. For any particular value
of k the function f (t) is a determinate function. In contras:, ifthe time t is fixed,
the function becomes a random variable,.

Let us note that among the possible values of t there :nay be such particular
values for which the random function equals a constant, Fcr instance, for the ran-
dom function which represents the response of some systen. to a random input, such
a particular value may be initial moment of this input.

We shall examine a somewhat different method of defining the random function
that we shall use below. This method is due to E. E. Slutskii /2/ It can be shown
that this definition is included in the former as a particular case.

The random variable f = f(t) corresponding to a selected time instant t ig fully
defined if its distribution function or probability density w(t is given. To character-
ize the random function, the mentioned distribution function or probability density
should be given for any time instant which lies within the tirae limits of observation
of the random process.



This characterization of the random function is 8till incomplete. The random
variables f1 = “tl)‘ f2 = f(tz) e fn = f(tn) which correspond to the various time

instants tl’ | FRRIN tn‘ are in the general case statistically dependent. The presence

2
of this statistical dependence makes it necessary to specify an n-dimensional distri-
bution law w (fl’ . fz. v fn). Here the number n has an arbitrary value. For
each n the time instants tl‘ . t2‘ cens tn can be arbitrarily chosen within the limits
of observation time.

Thus, the random function is defined, if for any value of n an n-dimensional
distribution law w (fl, f2, ces fn) is given, where the time instants tl’ t2. Cey tn
can be arbitrarily distributed within the limits of the time of observation.

In many cases this complete characterization of the random function is super-
fluous. The calculations necessary for practical purposes can be often carried out
if only the two-dimensional probability density w (fl, f2) is known, It is sufficient

for the solution of some problems to know only the one-dimensional probability den-
sity w(f). This is the case, for instance, if it is required to find the probability
that f shall exceed a given value a.

§5. Stationary and Nonstationary Random Functions

Let the n-dimensional distribution of the random function be given. We shall
fix the mutual positions of the corresponding n points tl’ t2, R tn on the time axis

and then displace the set of these points along the time axis without changing their
relative positions. If all the distributions which determine the random function
remain constant under this displacement, the random function is called stationary.
Thus, a stationary random function is statistically invariant with respect to time-
translation.

For a stationary random function the one-dimensional probability distribution
is independent of the time t, the two dimensional distribution is dependent on the
difference t2- tl only, etc.

In the general case the said time-homogeneity does not hold, and the random
function and random process described by it are nonstationary. The multi-dimen-
sional probability density of a nonstationary random function depends on the posi-
tion of each of the n time instants.

The random functions met with in many physical and engineering problems
can be considered, with sufficient accuracy, as stationary. Stationary processes
therefore occupy an important place in the modern theory of random processes. In
a number of cases, however, the random process is essentially nonstationary.
This hinders us from limiting the theory to the examination of only stationary pro-
cesses.

§6. Moments

As known from probability theory, the full characterization of a random vari-
able is given by its distribution law. Sometimes, however, such exhaustive informa-
tion on the random variable is superfluous. In this case the values of the first few
moments of the distribution law are often indicated instead of the distribution law
itself. An analogous situation exists in the theory of random processes. Here



one often refrains from considering n-dimensional distribution laws and operat;’s
with a finite number of moments.

The description of a random process with the aid of moments is less gompre-
hensive than in using suitable distribution laws. However, in many problems of the
theory of random processes probability densities are rather difficult fo obtain,
while moments are computed by quite elementary means and describge suffi-
ciently well the phenomenon studied. Moments are therefire widely used in
the theory of random processes.

Moments are obtained by the averaging operation. In «onnection with this we
shall first examine the question of averaging random functions.

As was shown in $4 the value of a random function depends on time and the
parameter k (realization number). On of the possible methods of computing an ave-
rage is by fixing a definite time instant and computing the avarage of the totality of
realizations of the random function. Here the operation of averaging can be applied
not only to' the values of the random function, but to any function of it. Exactly in
the same way one can select several time instants and apply the averaging operation
to any function of the corresponding values of the random function,

Another possibility is: selecting a certain number of realizations of the ran-
dom function and calculating their time-averages. As in the preceding case the
averaging operation can be applied to the value of the random function, to any func-
tion of this value or of several such values at once, In the lztter case it is first
necessary to fix definite positions of the corresponding time for all time-axis points,
and to displace (in the course of calculation) these points aloug the time axis, with-
out changing their relative positions.

Consequently, a random function has average values w:th respect to the set
of its realizations, and time-average values. The first corr2spond to definite time
instants, the second--to a definite realization of the random :unction.

In the general case, when the random process is nonstationary, the only aver-
age values of the first kind are of interest. These values ar« determined by the set
of possible realizations of the random function and characterize the latter as a whole.
For a stationary process the time-average values are also considered.

We now proceed to the definition of moments, starting with a one-dimensional
distribution w(f) at a time instant t. The moment of order v of this distribution is
defined by:

m@o= [ feHdf (=123 .. (2.1)

If follows from expression (2.1) that the moment m(t) is the average of the

random variable fV(t) over the set of realizations of the randym function. This
average is called the mathematical expectation of the random function fY (1) at time
t. We shall henceforth denote the mathematical expectation «f a random quantity
A by the symbol M[A]. Accordingly

m, () =M/ (0] (2.2)

In general, the moments (2.2) are time-dependent and are constants for
stationary random functions,

10



The simplest moment is the moment of first order or first moment
m, () =M[f@)] (2.3

which is the average of the random function at the time t over its set of reali-
zations,

The second moment

my (1) = M| f2(t)) (2.4)

is the average of the square of the random function at the time t over its set
of realizations,

For the solution of numerous practical problems it is often sufficient to con-
sider only the first two moments of the random function. In some cases such a
characterization of the random process is insufficient and it is necessgary to have
recourse to moments of a higher order, i,e., the third and fourth.

The moments of multi~-dimensional distributions are introduced in an analo-
gous way. The moment of order v of the two-dimensional distribution w(fl, f2)

will be any function of the form

myts ty= [ [ fiffwif. fldf,df,=m[si- ), 2.5)

where

I+j=vi fi=fu) Lr=F{ty).

It is easy to see that there are altogether v —1 different moments of a two-
dimensional distribution function, these moments corresponding toi =1, 2, 3,.,,
v —1. Fori =0 ori =v the moment ofatwo-dimensionaldistributiondegenerates
into the corresponding function of a one -dimensional distribution,

The simplest moment of a two-dimensional distribution is the mixed second
order moment

my(t, LY =MIf(W,) - fty) (2.6)

The moment (2,6) is the average over the set of realizations of the

product of two values of the random function corresponding to the instants t1 and

tz. If the moment m“(tl, t2) is given, this defines the second moment (2.4) of the

one-dimensional distribution, since, setting tl = tz = t in (2.6) we have

my L, )= M[f2()] = m, (). (2.7
For a stationary random function of the moments (2.5) are functions of the
two variables t1 and t2. For a stationary function a time-translation leave the

probabilities of the process characteristics unaltered and hence the moments
are functions of only the time interval 1 — [ta—1t,].

Any moment of order v of the three-dimensional distribution w(fl, fz, f3)

s expressed by:
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Mgty b =M @) Pt fF 1)), (2.8)

where

I+j+k=v

We shall note the fact that stating the third order moment of the three-
dimensional distribution

myy, (4t b)) = MIf(t) - [t ()] (2.9)

defines also third-order moments of a two -dimensional distribution. The transition
to the latter is effected by equating the corresponding two time instants in expres-
sion (2.9). In exactly the same manner, fourth-order moments of a two-dimensional
distribution are particular cases of fourth-order moments of a four-dimensional
distribution.

We shall draw the following general inference from the aforesaid. A random
function is defined, i.e., an n-dimensional distribution law w(fl, fz, . fn), is given

for any n, if for any v the moment

my 1t t o L=MIf(t) ft) ... feN. (2.10)

v

is known,

By equating appropriate arguments to one another we can obtain from the
moments (2.10) all other moments, whilst the totality of .11l moments determines
uniquely the n-dimensional distribution law for any n.

Since we shall chiefly meet the following moments of the type of (2.10), we
shall denote for brevity:

Ma b e ) =m(t t o L)

v

(2.11)

Beside the moments examined above one often mee:s also central moments.
A central moment of order v of a v -dimensional distribution is defined by:

Bt ta oo 8)=MUSU)—m )} [ty —m ()} ...
oS @Y m (@) {2.12)

It follows from (2.12) that for a random functior whose first moment
identically vanishes, every moment is central,

A central moment of the first order always equals zero. In fact, since the
mean value of a sum equals the sum of mean values of the summands, we have,

p O =MfO)—m O =MIf)]—m ()=0. (2.13)

We shall examine a central moment of the second crder. Carrying out cal-
culations analogous to the preceding we obtain:

12



B 2y, 'z)=M“f(’1)_m1 (1)) {f(’z)—'ml(lz)”:
=MIJEG) - SN —m (IMIfUD—m (1) M sl +
) m ) =my(ty, ) —m ) m(ty). (2.14)

The relationships for central moments of higher order are obtained in an
analogous manner,

In the particular case when t1= t2= t, expression (2.14) gives

B () =M[{f () —m, )] = m, () — m} (0). (2.15)

The quantity Hy (t) is the average over the set of realizations of the square
deviation of the random function from its average value m, (t) corresponding to a

time instant t, i.e., is equal to its dispersion [variance] uz(t) at this instant.

The second order central moment My (tl, t2) is often called autocorrelation
ratio and denoted by k(tl, t2). Thus,
k(ty, ) =1p,(t,, 1) (2.16)

The expression
LAUTSY

SRR 2.1

el 1) =

is called the normalized autocorrelation ratio. It corresponds to the correlation
coefficient widely used in probability theory.

For obtaining the above-examined moments, the operation of averaging over
the set of realizations of the corresponding random function was employed. This
method is general and equally applicable to stationary and nonstationary ran-
dom functions. For studying random functions another method of determining
moments, giving the same results, is also possible.

The statistical properties of a stationary random function do not vary with
time. It follows from this time-homogeneity that the average over the set of
realizations calculated for a chosen time instant gives the same result as the
time-average of a single realization. In the latter case the time of observation of
the random process should be sufficiently long (strictly speaking, infinite). This
proposition is known as the ergodic theorem,

The ergodic theorem is valid under sufficiently general conditions which are
generally fulfilled in practical problems. The proof of this theorem is given in the
work of A.M. Yaglom /3/ as well as in the monograph of V.I. Bunimovich /4/.

Thus, it is possible to calculate the moment of a stationary random process
when a single realization of it fk(t), corresponding to a sufficiently long observation

time, is given. The computation of, say, the first moment is carried out thus:

T
m|=MU(1)l=Tlim %ff,‘(t)dt. (2.18)
-+ oo bt
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For the second moment of a two-dimensional distribution we have:
T
. i .
n@ =My fe+ o= tin 1 [foperod @19 s
» oo
o

The computation of moments from a single realizatinn of the observed ran-
dom process has great practical advantages.

§7. The Derivative of a Random Function

Let us consider the derivative of an individual realirzation fk(t) of a random
functionf(t). Since the realizationfy(t)is a determinate functionoftime, an analogous
statement with respect to its derivative f'k(t) is algo true., Thus, the derivative
f'k(t) is a derivative in the usual sense and all the propositions of the differential

calculus of determinate functions are applicable to it.

Let us now fix some time instant t and pass fron: one realization of the
random function to another. In this case the value of the derivative f'k(t) will

vary in a random manner with the realization number, This random variable is
called the derivative of the random function f(t) at the moment t. The following

definition is equivalent to the above: the derivative of the random function at the
moment t is the limit*

futan—suy__df\) _ o

at»0 (2.20)

We shall explain the relation between the random function itself and its
derivative. For this we shall first take a normal distritution function, i.e., a
function defined by normal n-dimensional distribution laws. We shall assume for
the sake of simplicity that the mentioned function is stationary. Its two-dimensional
probability density is then of the form

. 1 ff“’Qanf:"}'fi
uv(j,.jz)—mexp[——k,—“—_—ﬁT— , (2.21)
where we denote for the sake of brevity

Lh=f@) fi=[(t) (2.22)

The parameters o 2 and p which appear in (2.21) are, respectively,
the dispersion and the normalized autocorrelation ratio o: the random process con-
sidered, the first one being constant with respect to time by virtue of the stationary
nature of the process, and the second one depending only on the time interval
At=tz—tl.

We shall change the variables in the distribution law (2.21) thus

h=1f fi=F+4f (2.23)

* The conditions for the existence of the limit (2.20) will be considered below.
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Hence we shall obtain after simple transformations*

1 2 =)+ 2 3 (1) 4 42
wlf. 8= gy exp [ (=) J-

(2.29)

In order to obtain the one-dimensional probability density for the incre-
ment Af it is necessary to compute the integral

+ o

wdf)= [ wif, a5)df. (2.25)

~o0

The value of the following definite integral is given in handbooks (see /6/) as

+ o

-
fe"‘”"“”dx:ehT ‘/—%. (2.26)

- @0

Making use of (2.26) we find:

1 Af?
w(df) = —— ex [——-~—-—]. (2.27)
VEVZ YT LT 2V ara—n
Thus the increment Af represents a normal variable with dispersion
ahp = 232(1 —p). (2.28)

Consequently, if the limit (2.20) exists, then, passing to the limit for

* Ap known from probability theory /5/, the rule of the change of variables as
applied to two-dimensional distribution laws is formulated in the following way.
If the new random variables { and n are related to the old variables x and y
by
E=Sx 9 n=¢(x 9
then the two-dimensional probability density w(t, 1) is expressed by the two-
dimensional probability density w(x,y) in the following fashion
.y w(x, Y
w(i n) = ——CHE.. "i =
d(x, y)
where
o
aE ) dx Oy
o(xyy ~ | oy dn
dx dy
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At—0, we shall obtain again a normal variable. Thus, tie derivative of a norm-
ally distributed random function has also normal distribution,

Let us find the dispersion of the derivative. The dispersion of the quotient
Af Atequals
2 ".zxf %21 —p (A1)}
Sppse =g =—""jza —°

(2.29)

For Af-+0 expression (2.29) becomes indeterminate since p(Af) + 1. To re-
move this indeterminacy we shall expand p(Af) in a power series in terms of Af:

pAN= 1+ (0) A+ 76" (0)- A1 ... (2.30)

Expression (2.29) assumes now the form:

1
OO M+ 5 7 OB

aif s = —23° A —. (2.31)

We shall examine this result. By virtue of the fact that the autocorrelation
ratio p(Af) is an even function, two cases are possible: 1) the point Af = 01is an
extremum, i.e., ' (0)= 0; 2) the derivative ’(0) at the point At = 0 does not

exist (such an example is the function p(3 = ¢-+1321), 1: is obvious that the deri-
vative of a random function exists only in the first case. For {/(0) = 0, going
over to the limit in (2.31) (Af — 0) we have;:

M {(%’[)qj = —3%" (0). (2.32)

Expression {2.32), if meaningful, is always positive. Consequently, for
¢ \0) —- 0, the function p(A) has an extremum at the pcint M = 0, this ex-
tremum being a maximum, since $(0) = 1 and for Af =0 we havep(df) <1,
whence it follows that we always have p” (0)<0.

We shall now sum up the results of the foregoing analysis. As mentioned
above, the derivative of a normally distributed random finction, if its exists, has
normal distribution. This result is directly related to the statement of probability
theory that any linear function of several normal randcm variables has also a
normal distribution. As the structure of (2,20) shows, the process of calculat-
ing the derivative is equivalent to forming a linear fun:tion of the two random
variables f(¢+ Af) and f(¢) with subsequent passage to the limit.

It is necessary for the existence of the derivative tkat there should be a statis-
tical dependence between values of the random function which are sufficiently
near in time. But if values arbitrarily near in time are 'ully independent statis-
tically, the probability that any realization of the random function is discontin-
uous at all points of the time axis and does not have a derivative is unity, i.e., the
random function does not have a derivative. However, the existence of a statis-
tical dependence is not sufficient. The statistical dependeace should be such that the
cendition p/(0) = 0 is fulfilled.

If we restrict ourselves to the examination of randon variables of finite aver-
age values and dispersion, which case is of fundamental iiterest in practice, we can
sav that the sum of several variable having the same distributionlaw alsoobeys
this law only in case the latter have normal distribution. No other distri-
butiorn law has this property /7/. Hence it follows ‘that under the condi-
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tions stated differentiation does not affect the distribution law only for random
functions of normal distribution.

The above reasoning is readily generalized for derivatives of higher order.

Let us find the law by which moments are transformed in differentiation. We
shall first consider the first-order momentof the derivative. Since in all cases
the operations of forming the average and of passage tothe limitare interchangeable,
we can write:

M[Y) = M| i LOE0—rO)_

ar a0 At
= lim M+ —Mf()] _ dam (1) (2.33)
- Y’ = Ta
at»0Q

Consequently, thefirst-order momentalso undergoes differentiation when the
random function is differentiated. It is obvious that the first-order moment of
the derivative of a stationary random function equals zero,

Generalizing the result obtained for the case of the first derivative, we have:

af1_ d"m (1) .
M) =t (2.34)

Let us proceed tothe second-order moment of a two-dimensional distribution
of the derivative, Since passing to the limit and averaging are interchangeable
we can write

M[Lw ]

at, " di
— LU A B —F{8) Sty + 80— f(ty) (2.35)
A;fTo M [ af, A, ]
3y »0

Introducing the moment m2(t1' t2) we shall give expression (2.35) the form

[4Ltn 4]

at, ah,
= lim ! l"'!(’r}‘uh L+ —my(l fy+ 8ty
i, >0 Aty Aty
aty >0
Mty 4 A4, b)) — my (4, 4y) } (2.36)

YN
The following final result is obtained from (2.36):

iy df(ty) ] __0'ma (4, 1) )

df, dty, 17 010t (2.37)

M

Thus, the second-order moment of a random function is differentiated
twice when the function is differentiated once. Formula (2.37) is readily general-
ized for the case of a moment order v:

afity df(ty)  dfy]_ Om (i ty. . L) Y
M[ dty T di, " dl, J“ v (2.38)

In precisely the same way it is possible to obtain analogous results for higher
order derivatives. The moment of order v of the n-th derivative of a random
function is given by:
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M [d"f (t)  d*f(ty) 4"/(1‘)] - a"m, Ly g 1) (2.39)

a a T A at%ary. . .or"

For a stationary randon functions differentiation with respect to time can
be replaced by differentiation with respect to the length of interval separating
time instants. As an example we shall consider the seconi-order moment of a
two-dimensional distribution of the derivative. The right-h:.nd side of expression
(2.37) can be thus represented for a stationary function

0y (2, ) .  d [(Oma(z) o'zl

oo, o | & o (2.40)

where
T=|lh—1, e

Keeping in mind that the derivatives d</df, and /0, equal unity in their abso-
lute value and are of opposite sign, we obtain for a stationary random function:

8f(t) dfity)) _  dmy(z)
[Par at]= - (2.41)

If we assume in (2.41) t = 0, then as could be expectei we shall obtain a re-
gult coinciding with (2.32).

§8. Integral Transformations of Random Functions

An integral transform of a random function f(t) is defined as
[
F=f/(f)sv(t) dt, (2.42)
"

where % () is a determinate function.

We shall first explain the nature of the quantity F. Ve shall assume that a
determinate function ¢ (f) is given and the integration interval a,b) is fixed. Thenopera-
tion (2.42) gives a certain numerical value of F for every 1realization of the ran-
dom function f(f). This value varies in a random manner f:'om one realization to
another {.e., for given ¢(f) and integration limits the integral transform (2.42)
is a random function of the realization number of the r:ndom function f(t).

The probability function of the random variable F depenis on the chosen func-
tion 7 (f) and the integration limits a and b.

For investigating the statistical properties of the random variable F we shall
break up the integration interval(a, b) into elements Af and gc over from the integral
(2.42) to the sum

N
F= ?.‘. S AN @ (1AN AL, (2.43)
=]

As mentioned in the preceding section, the distributicn law of the sum
does not, in general, coincide with the distribution law of the summands. There-
fore, in general, the distribution law of the random fun:tion is altered by an
integral transformation. Without examining this problen in general we shall
mention two important particular cases of it.

The quantity F is normally distributed if the random function f(t) which
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undergoes the integral transformation has normal distribution. The distribu-
tion of F is normal, foranarbitrary distribution law of the function f(t), any
values arbitrarily near in time are mutually independent statistically. The last re-
suit is the consequence of the central limit theorem of the theory of probability.

Let us proceed to the elucidation of the laws of transformation of moments in
integral transformations of random functions. We shall begin with the first or-

der moment ml(F)

equals the sum of the averages of summands, we have from (2.43):

of the integral transform. Since the average of the sum

N
mD = ;lm‘l”(t Af) o (i Af) At (2.44)

or,passing to integral notation we obtain

b
m" = [m e @ ar (2.45)

a

Thus, in integral transformations of a random function, the first-order mo-
ment undergoes an analogous integral transformation. In the particular case of a
stationary random function its first-order moment does not depend upon time and
expression (2.45) becomes simplified thus:

h
mP =mll [ e at. (2.46)

Let us calculate the second-order moment of the integral transformation(2.42)
We have from (2.43):

N 1
Ft = [_-Elf(lAt)«p(lAl)At] =
N N
= 2 DSUANS( AN ¢ (tA1) g (AN AL (2.47)

i=1j=1
With respect to an individual term of the sum (2.47), the operation of
averaging gives:
MISGADS(j Ao (1 A1) 9 (J Af) (ALY} =
=MfUs) (AN e (1Al ¢ (AN (A =
=m (181, jAG AN (j AN (A1) (2.48)

In view of this result we can write:
N N
M[F=mD = 3 Sm qar, jAryg (18 5 (A A2 (249
=1 =1

or going over to the corresponding integral notation we obtain:

[ 2}
m? = [ [md ¢ tyet)e dr, ar.. (2.50

a a
Comparing this expression with (2.42) we notice that in the integral transforma-

tion (2.42), the second-order moment of atwo-dimensional distribution of the random
function f(t) undergoes an analogous double integral transformation.
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One can readily convince oneself that it is necessary to apply a double integral
transformation to the correlation function for calculating the dispersion of the inte-
gral transform F, i.e.,

b b
b= [ [£0¢, )3ty e ) ar, ar,. (2.51)

a

The generalization of the results (2.45) and (2.50) obtained above gives for
the moment of order v of the transform F the following =2xpression:

b b
I3
m®= [ fm‘.”(r,. T A Y (A T (A N
o [}

v

oot dede ... dt,. (2.52)
Thus the calculation of the moments of order v of the random variable F is
carried out by means of a v-tuple integral transformation of the v-th order moment
of the v-dimensional distribution of the random function f(t'.
§9. A Set of Several Integral Transformations of the Fandom Function

We shall examine a set of m different integral traisformations of the
same random function f(t):

F,

b
frouwar,

o

I

[
[rosmar, (2.53)

[
Fu=[f)eniat,

“
where Pre Fue - -0 §m are some determinate functions.

The moments of each of the integral transforms(2,33)canbe calculated with
the aid of the relationships of the preceding section. The random quantities
FI'FZ' ..... ,Fm are in general statistically dependent and the m-order moment

of the m-dimenslonal distribution of these quantities is to te calculated.

Representing each of the integrals (2.53) in the form >f a sum of type (2.43)
we obtain:

N
F\Fy...Fp= iglf(:.mw,(t.u)m}x

N N
X El/(lzN) ?z(le-')N] e [‘,Zlf(’mN)?-(l.N)N}. (2.54)

or, in a different manner

=1 % -

N N N
F,Fz...F,,=‘§ %...‘}Et/(:,Ar)/(l,At).. flta88) X
X 91 (1 81) 2 (13 81) . .. o (Im A8) (AN)™. (2.55)
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Now, carrying out the operation of averaging analogous to that of (2.48) and
reverting to integral notation, we have:

MI|F,Fy.. Fl=m¥ =

b ]
=fh~fm (e ta oty 2 () 92 (8) - ..

m

- omtmdt dt, ... dt,. (2.56)
The result obtained can be readily generalized for different integration limits
of (2.53). If these limits are correspondingly (al, bl)‘ (az, b2), e (am, bm), one

can always choose such an interval (a, b) which contains the integration intervals of
all the integrals. Each of the integrals of (2.53) can then be written as follows:

L b
= ff(f)‘;k(f)(”:ff(f)'f;(f)(”, (2.57)

where for a; < f < bx we have
§y ()=, (8, (2.58)
and fora ¢ < axor b, <t Lb we assume

$ () ==0. (2.59)

Now, writing the required result in the form of (2.56) we notice that in each
integration we can return to the original limits, Thus,

b, b, b,
M{F,Fy.. F)=m¥ _ff fm‘,,,’(t,, fy oty X

I’l

X () 4ty . Gplty)dt dly .. dt, (2.60)
For any pair of transformations of (2.53) we can write by virtue of {(2.60):
b, b
‘P’=M|FiFJl:f fnz;”(/i. 1) 4.0 g5ty dtydt. (2.61)
ag Ay

Consequently, to obtain the mixed moment of a set of integral transforms
it is necessary to apply successively all the transformations, defined for the
random function itself, to its corresponding moment.

The result obtained allows for an obvious generalization for the case when
each of the integral transformations of (2.53) refers to a specific random func-
tion and all the m random functions are statistically interdependent.

§10, Linear Transformations of Random Functions

The present section is concerned with the generalization of relationships
obtained in preceding sectlons to the case of arbitrary linear transformations of
random functions. These results are given in the works of V.S. Pugachev/8, 9/

For the sake of clear and brief notation of the forthcoming theorems we shalluse
operational formalism. We shall denote an operation performed upon a variable or
function x as the product of this variable or function and the corresponding operator,
e.g., the operator A. Thus, the result of carrying out the operation A upona vari-
able or function x is symbolically expressed as follows:
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y = Ax. (2.62)

The operation A can vary greatly from case to case. It can, for instance,
determine a function y(x), i.e., indicate a rule according to which the value of the
variable y is found from the value of x. The integral transformations examined in
the preceding sections bear a different character, these transformations being
operators which determine the quantity F from the given function f{t). The transi-
tion from a function f(t) to another function ¢(t) carried out in a certain way can also
constitute such an operation. An example of such an operation is differentiation.
Finally, it is not difficult to think of a great number of various operations inwhich
a function y(t) is determined by the value of a variable x

From all these possible operations we shall pick out inear operations, i.e.,
operations which have the property

Aayx,+ a6+ ... Fapx,) =
=a,Ax, + a,Ax,+ ... +a,Ax,. (2.63)

Equation (2.63) signifies that the operation A upon a linear function of the
variables or functions xl, x2, ...... xn is a linear functior of the results of this
operation upon each of these variablesorfunctions. An operator which fulfils re-
lationship (2.63) is called linear,

We shall call an arbitrary linear operation carried o1t upon a random func-
tion a linear transformation of the random function, It .s easy to see that dif-
ferentiation and integral transformations of the random junction are particular
cases of its linear transformation.

We shall examine an arbitrary linear transformation of the random func-
tion f(t):
F(zy=A-/). (2.64)

The argument may remain invariant (z = t) in the linear transformation
(2.64) as, e.g., in differentiation,and may change as was the case with the integral
transformation.

If the function undergoing a linear transformation has normal distribution,the
outcome of the transformation is again a normally distribu'ed variable or function.
For any other distribution law having finite mean and dispersion, the distribu-
tion law is changed by the linear transformation.

As to the operations of differentiation and integral tr.nsformation, we have
noted that the n-th moment of the image of f{t) under a linear transformation
A equals the n-fold iteration of A applied to the n-th moment of fKt)

mP (2, 2 2= AgA A mD g ). (2.65)

In the proof of relationship (2.65) with respect to bott these operations the
fact was used that the order in which the operation of differentiation(or integral
transformation) and the operation of averaging are carried out is immaterial
(the commutative property of these operations). Since tie operation of averag-
ing commutes with any linear operation, (2.65) applies to all linear transfor-
mations of a random function.

As an example we shall apply result (2.65) to a linea: differential equationof
n-th order
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Ay = Byx. (2.66)

where x = x(t) is a known random function, 7y = y(t) is an unknown random
function, At and Bt are linear differential operators which written out equal:

d" d"—l

Ay=a, dt" I P P + ‘+‘ax +00r (2.67)
d”“

Bi=by L tb,., el +f>n;—+—bo~ (2.68)

Equation (2.66) in which the functions x(t) and y(t) are random is called a
stochastic differential equation.

In accordance with the results given above, a differential equation analogous

to (2.66) is valid for the first-order moments ml(x)(t) and ml(y)(t):
m¥ () = Bym'® (). (2.69)
For mixed second-order moments we have:
A A mP (1, 1) = B, Bemi® (2, 4, (2.70)

or, in full

(a,i'+ +ao)(a.."—"+ +ao)m‘z”'(zl. ty =

o} oty

=(h o +b°><b,,—"t"-+ +hu>m‘z”(t,, ty). (2.71)

" o ot
The coefficients a, and b1 in operators (2.67) and (2.68) and, consequently, in
equations (2.69), (2.70) canbe either constants or determinate time functions.
Thus for the moments of the first and second order we have obtained: in
the first case an ordinary differential equation, and in the second case a partial dif-
ferential equation. It is easy to set up in an analogous way differential equations

for moments of any order.

The results given in$§7 and 8 have been generalized above for the case of
arbitrary linear transformations. The results given in §9 are also capable of an
analogous generalization,

Let a set of arbitrary linear transformationsofa random function be given:

Fi(z)= A/,
F, (Zz) = Azf(f) (2.72)
Fm (Zm) = mf(t)'

Then we have by analogy with equation (2.60)

MIFF, . Fl=m'D =A,4,, ...
Amg mE Wt ). (2.73)

When all the transformations of (2.72) contain different random functions
which are statistically interdependent the result is written in an analogous way.
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Chapter Three

RANDOM FORCES UPON A LINEAR SYSTEM WITH LUMPED CONSTANTS

§ 11. Statement of the Problem and Tersninology

The processes which occur in electrical,mechanica , and electromechanical
systems are described by similar differential equations. For any system of the
mentioned three types an equivalent system of any one of hetwoother types can be
given. This makes it possgible to construct general methcds of analysis of random
processes, equally applicable to any of the indicated c asses, Consequently,
we shall henceforth not go into the physical method of realizing a system sub-
ject to random action but shall examine the problem ir its most general for-
mulation.

The locus of points where random force is applied to the system is called
its input. Depending upon the nature of the random process studied, the exter-
nal force can be of a different physical nature: an elect-ical voltage or current,

a mechanical force, torque etc. Similarly, the concept cf the"locus in the system"
should be made more exact in specific cages according tc the method of realization
of the system. Such are; a pair of terminalsofanelectricial system across which some
electric voltage is applied; a point executing translatocy motion in a me-
chanical system, at which point the mechanical force is spplied; the axis of rotation-
al motion in a mechanical system when a torque is exer:ed on this axis.

The locus of points at which the response to the applied force is observed, is
called the output of the system. The response of the system may be, for
instance, a voltage or current in an electrical system, a displacement or angle of
rotation in a mechanical system.

The simplest problem is the investigation of a random process in a gystem
with one input and one output. It is assumed in this case that a sufficiently complete
characterization of the input applied to the system is .wvailable., The statistic-
al properties of the system's response are here the s'ibject of study. It isalso
important in some cases to study the statistical correlation between response and
external force. The question, what kind of statistical characteristic of the external
force is sufficient, is solved with regard to the required exactitude of the statistical
properties of the system's response.

The general case ig that of a system of minputs anc noutputs. Of interesthere
are not only the statistical properties of each of the responses separatelybut also
the nature of the statistical correlation between the responses at different out-
puts as well as that between responses and external furces.

The course of the random process in the system de pends upon its state at
the initial time when input is applied, i.e., upon initial ccnditions. The latter may
be specified uniquely, as is done in the theory of dynamic processes, or statistic-
ally. Only in a particular (but important) case, where on.y the asymptotical be-
havior of the system for ¢ — o0 is studied, is the knowledge of initial conditions
superfluous.
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§ 12, The Methed of Stochastic Differential Equations
Let us consider a random process in a system having one input and one out-
put. As well known, in a dynamic process the response y(t) of the linear system
with constant lumped parameters under external force x(t}), satisfies an ordinary
differential equation with constant coefficients:

Ay (1) = Bx (1). (3.1)

Here At and Bt are linear differential operators:

an an-1 d
A,:a,,a—,.—f-a,._la’ﬁ—f—...+a,7’+ ag, (3.2)

dam dm—1 d
Ht:”mﬁ+hm.l"”.ﬁ+---+bxg;+ho~ (3.3)

Equation (3.1) is equally applicable to the description of a random process in
the system. Then the external force x(t) is a known random function of time and
the problem consgists in investigating of the statistical properties of the response
y(t) at the output of the system. Equation (3.1) then becomes a stochastic equation.

As had been already shown in § 10, a transformation of the distribution law
takes place generally in a linear system. Without discussing the problem of the
transformation of distribution laws in linear systems we shall turn now to the much
simpler problem of the transformation of the moments induced thereby.

Usingthe results of § 10 which deals with linear stochastic differential equations,
one can set up differential equations of the usual kind, corresponding to the stochas-
tic equation (3.1) and which describe the behavior of the moments of the response y(t),

For first-order moments we have the usual ordinary differential equa-
tion of n-th order:

AmP () = B,m'™ (1). (3.4)

Let us examine some particular cases of equation (3.4). The simplest case

1s the one in which the input is stationary, i,e., ml(x) = const. and the first

moment of the steady-state reasponse, i.e., att —» oo, is required. Then the
operators A; and By are simplified in the following manner:

Ay ==a, B,=bh,

and the required first-order moment is:

(3.5)

b,
m =2 m. (3.6)
If the input is stationary but the process leading to the attainment of a steady
state is of interest, one has to superpose upon the steady-state solution for
the first-order moment given by (3.6) a transient process described by the homo-
geneous differential equation:

Am® (1) =0. 3.7
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The solution here obtained of equation (3.4) with constant right-hand side
should satiafy the initial conditions of the system.

If the first-order moment of the input varies in time in a known way and
it is required to obtain a full description of the behavior of the first-order moment of
the response, the most general form of equation (3.4) should be used, The time
variation of the first-order moment of the input may be the result of either
the nonstationary character of the random force itself, ¢r of the superposition
of a regular input upon the random process. A mixed case, when both of the
mentioned factors appear, is also possible.

The solution of equation (3.4) can be effected by any of the known methods.
Since the random nature of the input does not introduce any new features into
the solution, we shall not dwell upon its technical aspect.

Let us turn to second-order moments. The secoad-order moments of the
input m, ‘%) (t1 .ty) 18, In general, a function of two variibles, as is the second-
order moment of the response of the system. It was shown in § 10 that the mention~
ed moments are connected by the differential equation (2,70) whose explicit form
is given by the expression (2.71). Thus:

A,.A,,m;’”(tl, 1) = By, Bt."'(zx)(tl' £ (3.8)

where Atl , Bt, , and At,, Btz are linear differential operators of the form of (3.2)

and (3.3),where the variable t is replaced by t1 and t2 respectively.

Equation {3.8) can be solved in different ways, one of which is the following.
We introduce a new unknown function of the variables t1 and t2

st t)=AmP (0, 1) (3.9)
and knowing the second-order moment of the input, w+ find the function
z(ty, t)=B,m® (L, 1,). {(3.10)
Equation (3.8) is then transformed into the ordinary differential equation:
Ays(ty, L)y =Brz . 1) (3.11)

In this equation the variable t, is the argument and ty - a parameter. The
arbitrary constants appearing in its solution are functions of the parameter tz.

After solving equation (3.11) wefindthe second-or ler moment of the gystem's
response from the ordinary differential equation (3.9). [n (3.9) the variable t, is
the argument and t.1 - a parameter.

Another possible method of solving equation (3.8) is the use of the Laplace
transform:

- -
f(p)=ff(t)¢""’ dt. (3.12)
0
Apsuming, for simplicity, zero initial conditions, let us apply the Laplace

transformation with respect to the variable tl to both gic es of equation (3.8). We
obtain:

Zr.Al.;(zw(Pn- ’z)=§p.3t.;(21)(P|- i (3.13)
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where

Z’.‘:anp'l"‘l"an—lﬂ?-"‘}‘ e +alpl+a°' (3-14)
Bp = bt + by b0 '+ .. b+ b, (3.15)
m¥ (p,, tz)=fm‘,”(f,, t:)e~Phdty, (3.16)

0
m$ (p,. ’2)2_[’"5:)(‘1’ ) e mtde,, (3.17)

0

The application of a second Laplace transformation with respect to the variable
tz gives

ApApm? (p,. p)= B,B,m (p\. py. (3.18)

where sz and EP‘Z are expressed by formulas (3. 14) and (3. 15) with P, replaced by

pz, and the twice-transformed moments have the form
[+ ]
mP G p) = [ Py ) e Pty =
0
o0
=f fm(g" (th, t)e~BU+R dy, dt,, (3.19)
o 0

w0 p) = [ A (o, t) Pt dty =
0

<o
= f f mY (1, t)e-patP dt, dt,. (3.20)
[V ]

Thus we obtain from (3.18) for the 'double'" transform of the required
moment;

BB
= o O
m? (p,, Px)=#mz " (P1 P (3.21)
Ll ]
The transition to the functionoforiginal variables i{s carried out for each
variable in turn and can be achieved by double application of the inverse trans-
formation or by other methods known from operational calculus /10/.

Differential equations connecting moments of higher order can be set up and
golved in an analogous way.

The method of stochastic differential equations can also be applied to the
more general problem of a system with m inputs and n outputs. In this case, one
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has to consider a system of n stochastic differential equations instead of one such
equation of the form (3.1). These equations are:

n -
AW, =Y B x () (k=1.2 ... m),
2 Aty Ez a0 ( ) (3.22)
where A(lk) and B(Jk) are linear differential operators, i:ndjarenumber-labels of

t t
the output and the input, respectively, andka running index enumerating the equations
of the system.

The systenr4 conventional differential equations for the first moments

z]l AYm® () = E B™m (1). (3.23)

corresponds to the system of stochastic differential equatiors (3,22),

By analogy with (3.8) we obtain the following system cf differential equations
for second-order moments:

L] ]
2, 2, At mil e =
(3.24)

m "
= ,‘.?i.,z. B g ml® (¢ 6 (R Ry=1,2,..., 1), (3.24)

where, for brevity, the notation mz(t) = m(t) is introduced.

{x)

The moments my g, appearing on the right-hand side >f equations (3.24)
become the autocorrelation ratios at the corresponding ir puts if j1 = j2 = J.
63,3,
dependence between the forces at different inputs. An analcgous congideration applies

to the moments mgy: appearing on the left-hand side of the same equations.
2

these moments are cross-correlations, i.e., they characterize the statistical

§ 13. The Method of Impulse Characteristics

In a number of cases the statement of the problem of random acting on
a linear system is preceded by an analysis of its respons« to a specific determinate
input. Standard inputs are the unit step function defined by the relationships
H{t)= Ofort <0, H(t)= 1fort>0, and the unit impulse h(t) o unitarea, this[delta]
function being the time derivative of the unit step function. The response of the
gystem to a unit step function is called its transfer characteristic. Response
to a unit impulse still lacks a generally accepted term. We shail henceforth call
this response the impulse characteristic of the system, A simple relation exists
between the transfer and impulse characteristics of the san e system, the second
being #he time derivative of the first,

We shall examine first a linear system with one input and one output. We
ghall assume that the first n moments of the random applied input and the system's
impulse characterigtics § (t)are given. The first n moments of the response at the
output of the system are to be calculated.

Let the input x(t) be applied at the initial time t = 0. We shall assume,
for simplicity, that the energy of the system is zero at this moment. If
thie condition is not fulfilled, a damped regular process which can be calculated
by known methods is superposed upon the investigated process.
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We wish to find the response to the random input at the moment t.. The
applied input can be considered as a succession of contiguous elementary
impulses of infinitely short duration (Figure 1). Their properties are similar to

)

f

n

Figure 1. The applied input as a succession of contiguous
impulses

thoge of the unit impulse. The gystem's response at the moment t; to an infinites-
imal impulse which is at the distance t from the origin can be expressed as follows:
dy () =Ek, — 1) x(t)dt. (3.25)
By virtue of the linearity of the system, the resultant response of the system
to all the infinitesimal impulges y(t,), contaired in the interval (0, t;), is the super-
position of the corresponding elementary responses of the form (3.25). Thus:
f,

yey=[xote,—na, (3.26)
0
Expression (3.26) is an integral transformation of the random function
x(t). If the first n moments of the input x(t) are known, then the general equation

(2.52) of § 8 makes it possible to find the first n moments of the response y(t). In
particular, we have on the bagis of (2.45) for the firgt moment y(tl):

- 1
mP )= [ mP e, —ona. (3.27)
]

The second moment [variance] of response y(tl) is determined from for-
mula (2.50) as follows

PR
m® ) = f j miO (e, R, — ()i, — £3) e, s,
o 0

(3.28)

For finding the general form of the moments of the system's response we shall
proceed as follows. By analogy with (3.26), the response of the system at a time
instant t, can be written in the form:

2 ty
yy= [ @Ot~ t)ar. (3.29)
0
The systems response at any other time instants t3, t4 ..... , tn' can be ex-

pressed just as easily. Considering all these expressions as a set of n integral
transformations of the random function x(t) which are similar to (2.53), it is
notdifficult to calculate, using expression (2.60), the n-thorder moment of the
system's response. In particular, we have for the second-order moment:

!
m 4, ty= [ [ mPel, e — e —drn di:
Y]

v

(3.30)
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Thus, being given the moments of a random input and the system's impulse
characteristic, and employing the properties of integral transformations, we can
calculate the corresponding momentse of the system's response to the mentioned
random input.

The above-listed relationships for moments make it possible to carry out
calculations in the most general case when the response is nonstationary and
caused by a nonstationary external force. When only the values of the moments
of response at an infinitely long time after the input is switched on are of interest,
the lower limits of all the integrals of this section should be taken as — 00, Then
the precise values of the upper limits become irrelevant. Only their correct order-
ing in time is important.

According to the remark make in § 8,the response of 1 system to a normally
distributed appliedinput is alsonormally distributed. In the general case, an
alteration of the distribution law takes place in a linear sys:em,

The problem of random action upon a system with one input and several out-
puts ig solved in an equally simple manner. The responses of the system Yyo Ygaer
¥y at 1ta n outputs at time instantst
(3.26) and (3.29) as follows:

1 t2 peean ,tn are written by analogy with
t,

nwy=[ xoue,~nat,
10

v ty= [ Okt —nar,
S (3.31)

'n

Vn (c,,):j x (0 E, (¢, — t) dt,

']

where El(t), Ez(t), ..... En(t) are lmpulse characteristi.:s of the system with
respect to the corresponding outputs.

The moments of each response are determined by re ationships of type (3.27)
and (3.30). The mixed moment for the system's n responses can be found if we
consider the expression (3.31) as a set of integral transformations of (2.53).
Then the application of forthula (2, 60) gives the following result:

( ¥y Lh
Y R
ma e b t,,)=f f...fmff)(l,.r:,....t,))(
o 0 ¢ (3.32)

X G — ) ta—1) ... b (ta— ) dts dts ... dfs.
Let us now consider a system with two inputs and two outputa., If convenient,

the results of its analysis can be generalized in a quite obvi>us way for the case
of m inputs and n outputs.

We now introduce the impulse characteristic £jy(t) of the system, where
the first subscript indicates the output and the second subs:ript the input concerned.
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In our case the system is characterized by the four impulse characteristics
B30, &gt £4,(t) and g (1),

We shall call the system's response to random excitation applied at one of its
inputs its partial response ¥ .Here, asabove, the first and second subscripts refer to

the output and the input, respectively, The four partial responses of a system with
two inputs and outputs are written as follows:

)= [ xnOt&—nad,

]
¢
@)= [ (Ot:t,—na,
[

- (3.33)
Yat)= [ £,k (t,— )1,
v

[
yaty= [ 5Ot @ — nar.
(]

The linearity of the system makes it possible to apply the principle of super-
position and to express the total responses of the system at both outputs thus:

Nt =yut)+ya @), (3.34)
Y1 {t) =y () + yn (1) (3.35)
Let us examine the total response of the gyatem at the first output. The first

moment of response yl(tl) equals the sum of first moments of the partial responses

yn(tl)andy]z(tl). The latter are determined by equations of type (3.27). Hence,
1 3
3.36
m )= [ mP0une—na+ [ o Qe —pa G390
¢ v

For finding the second moment we shall examine the response ¥y at both the

instants t2 and tlz

1) == (4 (N8
Ity = Y11 () + y13 (83) (3.37)

where the partial responses yu(tz) and ylz(tz) are determined by the first two

equations of (3.33) in which ty is replaced by tz. Taking into account equations
(3.34) and (3.37), the required second moment cdan be written as follows:

md (1, )= MLy, )y, (D) = My, (¢ yu ) + (3.38)
+ My ) v I+ My, )y W+ M P2t yi2 (8.

By generalizing the result (2.80) to the case where each integral transformation
(2.53) refers to a different function, we can express (3.38) in the following final
form:
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" ‘I
m (t, ty= [ [ m b, — 06, (a— ) drdi+
()
te t,

+] f ”';t" r')(t;- ';) En(‘z—’;)E\z (’l_t:) ‘”;d‘;‘f‘
o 0

t,
+ [ [ e e — i —maidl+
(LAY

ty 1,
r [N .
+ [ [ m e D6t — 3 —rydr an, (3.39)
LV
(x1, x3) - . .
where m2 (tl, t2) is the mixed moment of the applied inputs xl(t) and x2(t).

The calculation of moments of response at the second output is carried out in
the same way. Analogously, in view of equations (3.34) aad (3.35), we have for
the mixed moment of responses yl(tl) and yz(tz):

m¥ VNt )= My, (t,) y2 (t)] = MLy, (1) yo DI+

3.40
+ My, )y )]+ My, () y )+ My, )y (62)), ( )
or in an expanded form:
ot
m¥v @, )= f f mEV (8, 6) 8y, (0 —E2) Eay (tg— 12} dty dti+
- 0 0
+ [ [ mE T e — ) b e — ) dri dty+
u"""
+ [ [ mE Pl k6 — O — ) drdn+
o
+ [ [ w7 i — Ot~ dr dty (3. 41)
0 0

The readily carried out generalization of expression: (3.39) and (3.41) for
the cage of m inputs and n outputs gives the solution of the most general problem
of random input applied to a linear system.

If stationary random processes at the output of the s;'stem are analyzed, the

integration limits in (3.32), (3.36), (3.39), and (3.41) shonld be changed in accord-
ance with the remarks following formula (3.30).

§ 14. The Spectral Method
Unlike the preceding sections, where the obtained results applied equally to
stationary and nonstationary random processes, the randoin functions considered
in this section are stationary.
Let the stationary function f(t) be definedin the interval (0, T) of the time axis.

For simplicity, its first moment ig assumed equal to zero This random function
can be represented by a Fourier geries in the stated interval:

f(O = 3 (Axcosw t + Bysinwy t), (3.42)
k=1
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where

R
o =2, (3.43)
., (3.44)
Ak=-;—./ f(x)coswyx dx, ’
0
0 F (3.45)
Bk=7f S(x)sinw,x dx.
1]

The amplitudes Ak and Bk of the spectral components, obtained by the integral

transformations (3.44) and (3.45) of the random function f(x) are random quantit-
ties depending on the specific realization of f{x).

Using equation (2.50) let us find the dispersion azA of the amplitude A, :
k

T T

2 4
o4, = ﬁf COS wyx, dx._,f My (X, — x,)COS W, X, dX,.
[ 0

(3.46)
We shall transform the double integral appearing in (3.46) as follows. Let
us carry out the change of variables z = Xy~ Xy, in the inner integral.
Then T kS
P 4
) =71 f Coswyx,dx, f my(2) COos wy (X, — 2)dz ==
v ,~-T
T ES 1 x,
=%{fdx2 f m,(2) cos ez rl:+f cos 2w, x,dx, f m,(2) X
v z,=T ry-T
T Ty
X coswz dz + f sin 2u,x, dx, f my(2)sinw,zdz } (3.47) (3.47)
v =T
Each of the double integrals of (3.47) has to be transformed by changing the
order of integration. Considering that the function mz(z) is even we have for the
firat integral:
T E
f dx, f m,(z)coswmz dz =
[ n-T
v 4T T T
= f m, (2)COS wi2 dzf dx2+f my (2)coswzdz fdx,:
-7 ] [} z
T
o= 2f (T -— 2) m, (2) cos wz dz. (3. 48)

0
The two remaining double integrals are transformed in an analogous way. We
obtain the result:
T
Of‘k: 2 72.- ' (l —;)mz(z)cosm,,z dz —
0

T

12
_m.Tfmz(z)sinwkzdz}. (3. 49)
o
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Taking a sufficiently long observationtime T, one can make the term z/T within
the brackets of the integrand of the first integral arbitrarily small. Similarly, for
all the spectrum components of frequencies w,>a, where a2 is an arbit-
rarily small positive number, one can reduce at will the role of the second
integral of (3.49) by increasing the observation time, since thereby the order
k of the spectrum component increases. Thus, for suffi:iently large T we have:

O:k = 20*,
(3.50)
where a, is the amplitude of the corresponding componentg of the cosine spectrum
of the moment mz(z), i.e.,

T
7
ap=-5 [ Mmy(2)coswz dz.
k T J 22) Wi (3.51)
Analogously one can find the digpersion of the amplitide Bk determined by the
integral transformation (3.45). If the observation time T is sufficiently long, the
derivations give results coinciding with (3.50):
2 —
05“—20,‘. (3.52)
The spectral component of frequency , of a rancom function can be

written as follows: k
Agcosut + By sinwyt = Cysin(wit + 9,), (3.53)

where
3 A
Ci = A} +Bi ¢ =arcig 'Bf (3.54)

Since the average of the sum equals always the sum of the average values of
summands, we have on the basis of (3.50) and (3.52).

2 2
9gy = 04, + oh, = 4a,. (3.55)

Relationships (3.50), (3.52) and (3.55) make it possible to make the
following statement whichisimportant for the spectral theory of random processes:
the gpectrum of the mean squares of the amplitudes of a Fourier serles, or, in
other words, the power spectrum of a stationary random function, coincides
(to within a constant factor) with the cosine spectrum of its second moment
or correlation function.

Consequently, by analogy with the spectral theory of ceterminate functions, the
conclusion can be drawn that a weakly correlated random runction has a broad
spectrum while a strongly correlated function has a narrov' gpectrum. This state-
ment will be given a clear physical interpretation in the following,

Let us continue the investigation of the spectrum of :« random function.
We shall first clarify the question of statistical dependence between the probability
amplitudes A, and By. To this end we regard expressions (3.44) and (3.45)
as a set of two integral transformations of the random ‘unction f(t} and employ
relationship (2.61) to calculate their second-order mixec moment:

T
MIAB,) = 'ﬁf f My ( Xy — X,)COS WX, 5inwexg dx, dXty. (3.56)
o0
Expression (3.56) can be transformed like (3.46). The result is:

(3.57)

T
MIA By =— “T f %— m, (2)sin wyzdz.

v
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In view of equations (3.50), (3.51), (3.52) and (3.57) we note that for
T — oo the correlation coefficient

M[A:8
plAs Byl = °l xBa] (3.58)
Akaﬂk

tends to zero, i.e., for a sufficiently long observation time the random amplitudes
Ak and Bk can be considered as statistically independent.

The question of the statistical dependence between the amplitudes of spectral
components of different order, e.g., Ak and Am’Bk and Bm, Ak and Bm and,

finally, Am and Bk’ canbeinvestigatedinananalogous way. For T — co allthese

amplitudes are statistically independent of each other. Thus, under this condition
a random function is resolved into statistically independent components.

We shall turn now to quantitative relationships in the spectrum of a stationary
random function. According to (3.55), the mean square of the instantaneous value
of the k-th spectral component can be written as:

o= 7‘-05‘=2ak. (3.59)

Since the moment m2(z) is usually a damped function, the values of a, and

congequently of ¢, , are very small for a long observation time T. This con-
clugion follows directly from expression (3.51). However, for large T the spectral
lines lie very close together, and their number in a not too small frequency
band is quite considerable.

We shall select from the spectrum of the random function a narrow frequency
interval AF within which the spectrum can be considered as uniform, Thenumber of
gpectrum components in this interval will be AFT. Therefore, in view of (3.51)
and (3.59) we can express the mean square of the random function in the frequency
interval AF in the following way:

T

a:,=a:AFT=2AFra,=4AF!' ms(2) cos wyz dz, 3.60)
}

where w, is the frequency of one of the spectrum components in the interval AF.

We shall introduce the spectral density F(m) of the random function, inter-
preting it as the mean square of the random function in a unit interval of the an-
gular frequency. From expression (3.60) we have:

2 T
9P

F("’k)=ﬁﬁ‘=?f my(z)cos wyzdz (3.61)

v
or, going over to the limit for T — 00, we obtain:
x
2[ . d
- = m,(z)coswzdz.
Floy=3) m) (3.62)

Thus, the Bpectral density of a stationary random function is a Fourier
transform of its second moment, If the spectral density F(w) of a stationary
random function is known, one can find its second moment by using the in-
verse transformation:

m, (z)=f F () cos wz dw. (3.63)

The mean square of the random function is expressed by its spectral density thus:
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6’=f F (») dw. (3.64)
[1]

The results obtained, and in the first place the relat onships (3.62), (3,63)
and (3. 64), make it possible to develop a spectral theory «f stationary random
processes.

Let us examine a system with one input and one outpit subjected to a station-
ary external force. It is required to find the steady-state response of the system.
As in the spectral theory of dynamic processes it is assumed here that the complex
transfer ratio of the system is given:

¥ (Jo)

K jo) me 503, (3.65)

where X(jw) is the complex amplitude of the harmonic applied input, Y(jw) is the
complex amplitude of the steady-state harmonic response of the system.

Knowing the spectral density Fin (w) of the applied input or having calculated
1t with the aid of expression (3.62), andbeing giventhe second moment of the response
one can calculate the spectral density Fout(m) of the syst2m's response

Fow (0= F,, (@) K(jo) [* (3.66)

If the spectral density of the system's response is known, expression (3.63)
makes it possible to calculate its second moment:

o
m‘f’(z):f F.. (w)cos zw dw (3.87)
v
and, in particular, its mean square
L2
azzm(,")(O):f Fou (w)dw, (3.68)
"

The above considerations have been elaborated indejendently of the results
of the preceding section obtained in working out the me hod of impulse character-
istics. Another approach is possible in which one starts from the relationships
of the preceding section and bases the spectral method upon them. We shall
examine this approach dealing, as yet, only with systems which have one input and
one output.

In the preceding section we obtained formula (3.3C) for the second moment
at the output of the system. Taking into account the stationary nature of the processes

dealt with we shall rewrite this formula, taking -— 00 a: the lower limit
[
m® (¢, t)= f f m$® (th, 1) R(t, —8)E (8 — f2) di, by, 3.69)
-0 =00

We can obtain from expression (3.69) the above-shown basic relationships of
the spectral method. Before proving this we shall apply :urther transformations to
(3.69) using the property of stationarity of the process :onsidered.

In stationary procesges the second moments appeariag in (3.69) are even
functions of the differences tz—tl , and t'z— t’l. Further, since only the relative
position of the time instants t and t, is important, one can assume t = 0
without loss of generality. Now, introducing the notation : = t2 - tl = t2 and chang-

ing the integration variables:t’1 = —0‘.1'2 =—0,, we can write (3.69) in the form:
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o

mP @)= [ 8O+ 2)d0, [ mi? O, —0)EM) a0, (3.70)

or, if we set 6, —0,=086,

n® (2)= fs(o,+z)do, fm‘,”(o)s(e+o,) 9. (3.71)

-8 —.l
Let us change the order of integration in the double integral of (3.71). Then
we shall obtain;
z -]
mP ()= [mP@®d0 [ t@+0)EO:+ 2%+
-co L

hoad el (3.72)
+ [ mP@)d0 [ O+ 080+ 2)dby.

In the inner integral of the first term (3.72) the integrand vanishes for H2<- 4.
Therefore the lower limit of this integral can be formally replaced by —oo0.
A similar change is equally possible in the inner integral of the second term since
for 8, —z wehave &(0, 4 2)=0. Consequently,

L ] +00
mP @)= [mP®d0 [0+0)80:+2d0h+ (3.73)
- e
+ [ w7 a0 [ e +080, +at, =

+00 +0
= [ mPOd0 [ O+t + 2 dby.

carrying out the substitution 8,4 & =¢, in the inner integral of (3.73) we

obtain: +oo oo
mP@) = [ mPOd [ @ty —0+adp=
- - 40
= fmg"(ﬂ)?(o. 2)db, (3.74)
where +oo -
20, )= o{s@)e@—eww- .15

We have now completed the preliminary transformation of expression
(3.69) and proceed to the basic exposition of the spectral method.

As well-known / 11/ the complex transfer ratio of the linear system and its
impulse characteristic are connected by the direct and inverse Fourier transforms:

+0

Koy = [ t@e ™ at, (3.76)
e

EU)-—-—,—L fK(j..,)e""’dm. (3.77)

Furthermore, the following relation 1s knowa in the theory of Fourier transforms:
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+00 +00
ff(o/(c+c)dr=.";. f 16’ ds, (3.78)

where f‘ is the spectral density of the function f(t):
+00
fo= [ f® e ar, (3.79)
-
Making use of these results we can rewrite equation (3.75) thus:
+o0
90, 2)=o- [ 1kUe) [ e *=" g, (3.80)
-0

Substituting this expression for @(f, 2) in (3.74) and changing the order of
integration we obtain:

0 +oo
m(') (z) = m(', (a a9 . ! IK( L] e]‘l‘~’-’ dw =
2 .£ 2 (0) ﬁ_{ Jo)| » -

+0 +o0
=5 [IKGo)Peda. L [ m @) e~ a0,

(x)

Since the second moment m (8) of the applied inpu: is even, then, taking

2
into account (3.62), the inner integral of expression (3.81) can be transformed in
the following way: 4o @
L [ mo @ = do =2 f mim @) cos w8 a8,
= = (3.82)
—® 0
The integral of (3.82) is an even function of the frequency . Similarly, the

square of the modulus of the sygtem's transfer ratio |K (G} }2 is an even function of
the frequency. This makes it possible to write expression (i°. 81} in the following
final form:

-] a0
mp )= [ 1K (jo)? coswzdm--i—fm;"(ﬂ)co;me a. .
L] (1]

This result is entirely equivalent to the one obtained es¢rlier for the relation-
ships of the spectral method. In fact, comparing integral (¢.82) with expreasion
(3.62) we notice that the integral gives the spectral density of the applied input.
Further, taking into account expression (3.66) we see that (3.83) has the same
meaning as the earlier result (3.67).

The difference between the second way of establishing "he spectral method and
the first one consists in the fact that in the first one the concept of the gpectrum
of the random function itself was introduced while in the second one appears the
spectrum of only its correlation ratio. Therefore, the seconione leads us more
quickly to the goal. However, in some cases the spectrwa of the random func-
tion is a very useful concept,

Let us proceed now to linear systems with several inpits and outputs. For
the sake of simplicity we shall examine here, as hitherto, systems with two inputs
and two outputs. The generalization of the speciral method which we have
in mind can be achieved by any one of the two ways given above. Here we give pre-
ference to the second one. This is not due to basic consider:tions but is explained
by the desire to shorten the calculations necessary for obtairing the final results.

Our system will be characterized by four transfer ratios:
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|K11(jm) [ 'Klz(jm)l, |K21(jm)| and |K22(ju))|, and also by the four phase shifts:

P1ilo), @15(0), @gy(w) and 999(m), where the first and second subscripts refer to
the output and the input, respectively.

In the preceding section we obtained expression (3.39) for the second mo-
ment at the first output. Taking into account the stationary nature of the procesgses
considered, this expression can be written as follows:

t

» 'A
m @, ty= [ [ w5 Bt — 0k £ de dfs +

e
+J

4
I R AN AT O AR

- —08
“,
+ [ [m s D6 — Db — D ai+
R
+ [ [P Dt — 0t —bdl ds;. (3. 84)

The first and the fourth integrals of (3.84) have the same form as the integral
of (3.69). Therefore, by analogy with (3.83) one can write:

t, ?
’ ’ ‘ (3.85)
[ [, tte—re t,—dyadat=
. 2 iz )
=f|K,,(Jm)]'cosu»zdz-Tfm, (8) cos w0 d8,
[H] [}
t, t,
[ [ b s (ot ari dri=
=f|K1,(jm)|=coswzdm-—:‘:—fm;'-’(o)cowedo. (3.86)
(] ]

The integral of (3.85) gives the second moment of the response that would have
taken place if externalforce were applied at the first input only. Integral (3. 86)
is aresponse analogous to the characteristic for external force applied at the
second input only,

We shall proceed to the transformation of the second integral of (3.84). Unlike

equation (3,69), where the function mzx (t'l, 1‘2) was an even function of the

difference t'z - t', here the function mz(xl' x2) (t'1 - t'z) although being a function of
the difference t'2-t'1 {by virtue of the stationary nature of the process), is not in
general an even function. Since in the course of the transformations which led us
from equation (3.69) to (3.74) and (3.75) we had not assumed that the function is
even, we need not repeat the above transformation and we can write directly:

[
[ [me =@ et — 0t — ) dfi df; =

+0
= [ mi = @90, 2, (3.87)
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where

400
9 (0, z)==-£ Eia () &1y (p— 0+ 2) ). (3.88)

For the further transformation of expressions (3.87) and (3. 88) we shall use
the relationship +0

+00
f I(f)g(t+f)dt=5]; fflx-»f’"d“’- (3.89)

which is known from the theory of Fourier integrals, and in which f_, and g, are
the spectral densities of the functions f(t) and g(t) and in which the asterisk
indicates the complex conjugate.

Since, according to expreasion (3.76), the system's transfer ratio is given by
the Fourier transform of its impulse characteristic and in view of equation
(3.89), we can rewrite equation (3.88) as follows:

+ 00

2. n=p [ KalGw)Ky (o) ero-0to. (3.90)

-
We now substitute the obtained value of (0, z) in (5.87) and, changing the
order of integration ,we have:

f fm“' B (60 1) 5 (ty— ) kg (8, — £1) dt)s dty = (3.91)

=3 f Kia () Ky, (o) ' do - - f i (0) €S,

An analogous form can be given to the third integral «f expression (3. 84):

ty v

f f M (L, ) bt — 1) Eig (b — 1) dty dip = (3.92)

-0 -0

== — f Ku(jw) Klz (_/Il)) Cj.' dw - f ﬂl(’" "’(0) t-’.o dO

Now, using the results of (3.85), (3,86), (3 91) and (3.92) we rewrite
(3.84) as follows:

(")(2)—fIK,l(jm)llcosmzdm.—fm“-’(o).-o,.,,ed9+
+ f | Kiz(Jo) |2 cos wz do - % f m5™ (0) cos wh 40 4
v 0
t ” . . .
+ 5 f [Kp) (Jo) Kiz (Jo) + K (Jw) - Ky (Jui) e/t do X

bt -,l;- f m{z z) (8) e~ =4 0. (3.93)
-
l.et us analyze the equation obtained. Comparingtl.efirstintegralof {3.93)
with equation (3. 83) we conclude that this integral gives he second moment of
the response which would take place if the external force w-re applied at the first
input only. The internal integral of the first term multiplied by 2/r gives, as
follows from (3.62), the spectral density of external force at the first input:

% f mff"(ﬁ)cos wh db = Fz (w). (3.94)
0
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The second integral expresses the second moment of the response under
external force at the second input only. Similarly to (3.94) we have:

o
—z- f m™ (8) cos w 8 = Fz (w). (3.95)

0
The third integral i{s the result of the statistical dependence between the ex-

ternalforce atthe two inputs. The inner integral of the third term witha factor of 1/n
+ a0

TI f mie Z)(N)ye-Job ) = Feor, (jw) (3.96)

expresses the spectral density of the mixed moment mz(xl' x2) {8). We shall call

this spectral density the mutual spectral density of the external forces. Since in
general the mixed moment is not an even function, transformation (3.82) is not
applicable here and the mutual spectral density itself is complex.

Taking the aforesaid into account, we can write equation (3.93) in the
following more compact form:

m?’(2)= f LKy Go) 2 For (@) cos w2 dw + (3.97)
L

-+ f [ Kip (Jo) |2 Fa, (w)coswz dz +-
0
+ oo

+%— f 1Ky (Jw) K;z(j“’)"i’ Kl.l(ju") Kiz(Jw)| Fyz,(jw) & %duw.
-

An analogous relationghip is valid for the second moment of response at the
gecond output: @
mlzy,) (2)= f | Koy Ju) 2 F_rl (w)cos wzdw -
0
+ J | Kyy (o) [t Fa, () cOS w2 do -
400
3 1K G K o K o) Ky Gl P, o) ¥ . (3.98)

To calculate the mixed moment of response at both outputs of the system we
use equation (3.41) of the preceding section which assumes the form

mte v (”1- ) =

t,
= [ [mE i — Dbt — ) dr af +

1y t,
+ [ [l i — Ot — et g+
_,l)"—mtl
’ ’ ’ ’
+ [ [m e s = O~ drldl 4+
t, 8,
+ [ [m e et — Dt —nyar ar, (3.99)

for stationary processes.

The transformation of analogous integrals had been carried out in the
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foregoing. Therefore, without writing out the corresponding derivations, we shall
give immediately their final result:

+o0
e )= [ 1K o) K () P, (0) 4

+ Ki2 G Ky (Jo) Fy (w) +

+ {Kuy Gw) Kyg o)+ Ki2(jw) Kz 0 jw)) Far, (o)l €7 il
(3.100)

It is understood here that the order of the two time instants is such that "2 > tl.
It is easy to see that the square brackets in the integrand of (3.100) contain
the mutual spectral density of response at both outputs.

Thue, Equations (3.97), (3.98) and (3.100) obviously determine the statistical
properties of the responses at both outputs of the system,

§ 15. An RC Circuit excited by a Stationary Fluctuating Voltage

In this section we are concerned with application of methods expounded in the
preceding sections to a simple particular problem. This problem is given here as
a clear physical ilulstration, being at the same time the point of departure for some
generalizations to be given later.

u,, () ¢ oy (t)
- g

Figure 2, An RC Circuit excited by a fluctuating voltage

Let an electric fluctuating voltage u;,(t) be applied at the input across the RC
circuit (Figure 2) at the moment t = 0. It is assumed that this voltage is a station-
ary random function of time, whereby its d.c. component ({irst-order moment)
equals zero, and the second-order moment, which in this cise coincides with the
correlation ratio is

mi™ (¢, t) = o 7P 0 {3.101)

It is easy to see that the quantity Uizn is the square of the effective value of
the input voltage. The initial charge on the capacitor is assumed equal to zero.

It is necessary to find the steady-state law of the second moment of output
voltage. This will make it possible, in particular, to find :he law of the variation
of the effective fluctuating voltage at the output.

We shall use the method of stochastic differential equations for the solution
of this problem. The stochastic differential equation which describes the investigated
random process has the form

du o (£
dt

+ auou (f) = au;, (), (3.102)
where a= 1/RC

Thus, the operators At and Bt of equation (3.1) are ir this case expressed by
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d
Ay=_r+a By=a. {3.108)
Therefore, the differential equation (3.8) reads in this particular case
(7.4 2) (o +a) m&™ €1ty =arm 1y, 1) (3.104)
oty oty ? vl 2 Yo Rk

To represent the required second moment in the form of (3.21) it is necessary
to find the double transform of the second moment of the input, determined
by expression (3.101). Let us calculate its Laplace transform to the

variable tlz

;gin)(l’h ty) = f "lzm) (t, ’z)eqpl"‘ﬂl =
0

5 o
=a} lf e-Pl-td p-putgt f,—m-me—r.r, dr by =
0 X

[}
2

Bz_inpz ‘239—,’"’ -(ﬁ +pl)e-ﬂ"}’ (3. 105)
1

]

Now we shall transform the obtained expression with respect to the vari-
able t,:

:';l.im) @, p)= f ’;gm)(l’n- L)e mhdet, =
v

=] -]
2
=b?c"’_2 2B fg-m.ﬂv.) 1.412_(p+,,‘)f,—lw9' Gt} =
—# v 0
—dl B+ptp
RETIRN NT2ES NTIE AN (3. 106)

The trangition from the operators At and Bt to their transforms gives,
according to (3. 13) and (3.15):

Zp=p+a; E,,:z. (3.107)
Therefore, the required double transform of the second moment which has in

general the form of (3.21) is obtained in thig case as

B+ p+p: .
(Pr+a) @1+ 3) (P + ) (P +a) (2a + B)

The inverse double transition to the original, which can easglly be carried out
with the aid of a table of operational relations, leads to the required result:

== {out
e

(P Py) = 2?3, (3.108)

2
m (¢4, 1) = —a:’_'“p, {ae-w.—u_p,-- -t
+(a4Be-cthrt) _gle-Blret) t p-lat,+ Bt} (3. 109)

Let ug examine the obtained expression. As should have been expected, it

is symmetric with respect to the variables tl and t2 and satisfies the initial

condition m (out) (0,0} = 0. The second moment of the response depends, not onlyupon
the absolute value of the difference itz - tl I , but also upon the disposition of both
time instants with respect to the time the input is switched on. Thus, there
is a nonstationary random process at the output of the circuit. The steady-state
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law of the mean square of the output voltage is obtained by setting in (3.109)
t,o=t, =t
1 2 o
2 a 2 e-
= —_— ol — -at
Fow (1) a—(—ﬁ"" {l ,,_p(ae Be )} (3.110)
remains finite, the second moment of the output voltage tends to its steady value:

If tl —+ o> and t, —+ cowhile the absolute value of their difference |t2 -t

2
ag.
mi (1) = Fgrlae Pletl —femeint), (3.111)

Now the second moment of the responsedepends on y upon the relative position

of the time instants tl and t2, i.e., in the limit a staticnary random process is

obtained.

Assuming in (3.110) t — oo or in (3.111) |t2-t = 0, we find the mean

|
square of the fluctuation steady-state voltage at the output of the circuit:

1 2 a
our == %in TEE (3.112)

The normalized steady-state correlation ratio will be:
S (ty ) seMBThl_pemtlt-til (3.113)
Pour (e t2) = o2 = a—8

out

Thus, the necessary quantitative relations have be :n obtained. Let us analyze
them.

We shall call correlation period the time interval within which there is a signi-
ficant statistical dependence between the values of the random function (voltage inour

case). As a criterionof this dependence one may take p( ty - t2|) » 0.1, for instance.

Furthermore, let us call the time in which the voltage of the capacitor is reduced to
10% of its initial value, the discharge period of the capzcitor. Then equating the
correlation period of the input voltage to the discharge p=riod of the capacitor
corresponds to equating 2 and B.

Let B<<a. i.e., the correlation period of the app .ied input greatly exceeds
the discharge period of the capacitor. In other words, t1ie speed at which the random
process occurs in the circuit 18 much greater than the wean rate of change of the
input voltage. In this case we obtain from (3.112) and (&. 113);

a:ul zd?n; pout (‘l' t!)ze-g' Lt ;' (3' 114)

Equation (3. 114) signifies that under the indicated conditions the statistical
properties of the output voltage coincide with these of th:: input voltage. The reason
for this lies in the fact for § <€z the voltage at the cutput of the circuit
manages to follow the variations in the input.

We shall assume now that a <73, whichcorrespords toa longdischarge period
of the capcitor as compared with the correlation pericd of the input voltage.
Then equation (3, 113) reduces to

Pout (£, ty) = e~olt-tl, (3.115)

44



1.e., the degree of statisticaldependenceatthe output does not depend upon guch
dependece at the input, but is determined exclusively by the parameters of the
circuit.

It is noteworthy that with weak correlation of the applied input, (2 <€ ),
the equation of the correlation ratio of the output voltage has the same form as
the equation of the digcharge of a capacitor through a resistance i.e., the equation
of the specific transient process of the system. This correspondence ia not accidental.
The reasgon for it will be explained in the next section.

Let us note that when speaking of a weak or strong correlation of the
input we should not consider its correlation period unrelated, but we ought to
compare the correlation period with the duration of the specific transient pro-
cess of the system to which the excitation is applied.

w1y - 1|

) ¢

Figure 3. Graph of the second moment of the voltage across the input of an
RC circuit

Let us explain yet another characteristic property of a weakly correlated in-
put. For this we shall turn to expression (3.112) which, for a <€ 3 can be written
thus: o!

°:)ut =a 'l{lr *
(3.116)

For a clear interpretation of the relation obtained let us compute the area S
bounded by the graph of the input moment (3,101) and the abscissa (Figure 3).
We shall put there |ty —t;|= . Then

h 2
3___2/‘,3",-,,“:2’%_ (3.117)
Q

taking the obtained result into account we shall rewrite expression (3.116) in the
following way:

o =
ou =g aS. (3.118)

Thus, the mean square of the system's responseto a weakly correlated
input is determined by the area S, which characterizes thiginput and by the para-
meters of the system. The present result was obtained for the specific system
with the particular form (3.101) of the function mz(m) “1”2" It 1s ghown in the

following section that this statement is of general application.

All the results listed above have been obtained by the method of stochastic
differential equations. Let us solve the same problem by the method of impulse
characterigtics. To make derivations brief, we shall compute the second moment

of theresponse onlyin the stationary regime. For thie we shall use expression
(3.30) in which the lower integration limits are taken equal to — co.

We shall assume for the sake of definiteness tl > tz and we shall calculate
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the inner integral of expression (3.30) with the above-ment.oned change of the
lower limit. The impulse characteristic of an RC circuit .8, as well known, given
by:

HO)=ae=et, (3.119)

Taking into account relation (3.101) for the second momentof the applied input
we have:

&
[ ma, e, —tyan =
-0
.

2 .o ,
—fit,—t —a(l, -t
=al | [t O

-0

] - .
+fe"”'1"=’ et gl

s

o 2fe P g, e
_aom{:___p,‘x__u:_p,‘a}. (3.120)

- —t
According to (3.30),the result obtained ghould be multiplied by ae sty
and integrated with respect to tz between the limits — oo and tz. Carrying out the

said calculations we finally obtain:
ae?
iy (e t) = g—ogalae= (b=t —fe= 1 1), (3.121)
i.e., an expresgion which coincides with (3.111).

Let us carry out the same calculations by the spectral method. First, using
(3.62) we shall find the spectral density of the appliea inp-ut
0

2 : 2 2 3
Fi. (.)=?fui,,e chOSu)ZdZ———:Gin F‘m. (3.122)
[
The transfer ratio of the circuit equals:
1 a

IK(jw)l:Vl-*-U'RTZq:V?‘F“’!' (3.123)

Therefore the spectral density of its response is, according to (3.66):

2 2 a8

Foul (oj): Y Jin .g+ W) ( |+ w!) . (3.124)

Now, using expression (3.63) we find the second moment of the steady-state
response of the circuit:
a0

{out) _ _2 1 a%f cos 2w L
m (’)_fn"" FEAE e =

LU

aa?n
gm(ae—m_pe—u), (3.125)

Thig result had been obtained earlier by the method of stochastic differential
equations (formula 3.111) and by the method of impulse c aracteristics (formula
3.121).
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§ 16. Uncorrelated Input

In many problems of the theory of random processes the input is weakly
correlated, In this case it is both possible and expedient to idealize the pro-
perties of the input. This idealization leads to the concept of d-correlated or
uncorrelated input,

We ghall use the method of impulse characteristics to carry out the
mentioned idealization. We shall turn to the general expression (3.30) and subject
it to a transformation for the case of weak correlation of the applied input, Let
ug examine the inner integral of this expresgsion, where we get t2 > tl.

Weak correlation of the input signifies that the major part of the area S, bounded by
the graph of second moment mz(X) Wl' t'2) and the abscissa, spans a narrow inter-

val of the values of t|1 which containg the time moment t'2. The narrowness of the

mentioned interval should be understood in the sense, that the variation of the
function £ (tl-t'l) in this interval is insignificant, and it can be replaced in this

interval by its value at the point t!, i.e., by the constant E(tl-t‘z). This makes

it possible to replace the inner integral by the following approximate expression:

t t
! ' (3.126)
[ m9 v —yat =t —a) [ w2, fyad =
0 0
= SE(t, —12),
where the area S is in the general case a function of t.. The weaker the
correlation of the input, the more exact is the estimaté (3.126). Formula(3.30)
now assumes the form
‘l
(¥) -~ ’ ’ ’ ’
m¥t,, fz)'\cafS(f‘z)f(h—’2)5(’z—fz)dfz~ (3.127)

The result obtained confirms the statement of the preceding section (follow-
ing formula (3. 118)) that, when a weakly correlated random input acts upon a
system, the area S fully characterizes the random process.

Since the form of the boundary of S ig irrelevant under the conditions consider-
ed, the actual moment mz("‘)(t'1 ,t'z) may be replaced by an impulse function of

equal area, f.e.,

m® (¢, 1) =St(tz—1), (3.128)
where § (t'z—t'l) is a unit impulse.

An analogous situation exists in the theory of determinate transient processes.
If the system is acted upon by an impulse the duration of which is much shorter
than the duration of transient procesges in the system, such an impulse may be
replaced by an impulse function, i.e., an impulse equal in area to the actual one,

having infinitely small width and infinite height.

An input whose second moment is of the form of (3.128) is called 8- correl-
ated or uncorrelated. The estimate (3.127) becomes exact for such an input:

13
m® = [ Sedte, — ke — 1) s, (3.129)
)

In the particular case when the applied input is stationary we have:
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t,
mY ¢t =S [ (e — - an. (8.130)
0

If the steady-state second moment of the system'::. response is sought, the
lower limit of the integral of (3.130) should be replaced b;- —oo, 1.e.,

[
mP, =S [t —iG— . (3.131)
The last equation can be pres;ented in a form which is more convenient for
computations. We ghall set tl-tz = t and introduce a new integration variable
x = ty—ty . Then we obtain:

«©
mP@=S$ [t t(x+dx.
1 (3.132)
The last equation gives the connection between the steady-state second
moment of response and the impulse characteristic of the system if the input
is uncorrelated.

Other relationships of the method of impulse characteristics are easily trans-
formed in a way analogous to the above.

Let us see how the general relations of the method «f stochastic differential
equations become simplified for uncorrelated input. Fer this kind of input its
moment in differential equation (3.8) which connects the second moments of
output and input should be replaced by the value of the moment from (3.128).
In accordance with this, let us calculate the double transform of the second
moment of the input, entering in expression (3.21). We shall assume here the
input as stationary. The transformation with respect t> the variable t1 gives:

m (P )= [ S¥Ga—t) el dl = Se- bt (3.133)
1]

A second transformation with respect to the variable 5 leads to the following
gimple result
" (P =500
" Pt Py (3.134)

Let ua note that this result could have been obtainec¢ also from (3.106), in
view of (3.117) and assuming 3 — oo.

The above considerations can be obviously extended to vther relationships of
the method of stochastic differential equations,

Let us find the spectral density of uncorrelated input. If the correlation
period of the input is much shorter than the period of the frequency at which
the spectral density is to be computed, then one can aisume coswz=1, in
the calculation of integral (3.62) and then:

o
F(w ::-f-fm,(z)dz=%,
0 (3.135)
where the quantity S has the same meaning as before.

In the ideal case when the correlation period equale zero, expression (3.135)
is correct at all frequencies from zero to infinity. For a imall butfinite correlation
period it is valid only at sufficiently low frequencies which correspond to periods
much longer than the correlation period.

Equation (3,135) shows that a stationary uncorrelated input has a uniform
spectrum in the entire frequency range from zero to infirity.
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An uncorrelated input has an infinite mean square oZ , as follows directly
from equation (3.128) when we take there t) = t'y. The same result can be
obtained from (3.117) by assuming B-s+o0o0 at S = const. Consequently,
such an input has infinite energy. This result is the consequence of the assumed
idealization of the actual properties of the input,

(g - )

‘ b

at e

Figure 4. Graph of the second moment of an uncorrelated voltage input

We shall pay attention to the fact that an uncorrelated input can cause a
finite response of the system only if it has an infinite mean square, i.e., afinite area
S. To explain this we shall introduce the concept of specific energy of the input,
interpreting it as the energy developed in a unit active resigtance. If we now
consider the input succession of infinitesimal impulses immediately following
on each other, the heights of the impulses being considered as uncorrelated, then
the graph of the second moment will be of the form shown in Figure 4. and the area
S will represent the mean specific energy of the individual elementary impulses.

Each elementary impulse communicates a certain energy store to the system.
Storage of energy takes place in the system only when the impulses applied to it
are ordered to some extent, as is the case with determinate as well as with correlated
random actiong. Then, at infinitely small specific energy of the impulges (finite
a2 ) their superposition produces a finite effect at the output. In the absence of
correlation no energy can be stored in the system andfinite response can be eli-
cited only in the case when the specific energyof each elementary impulse is infinite, i. e.,
Sin= 0°.

Let us explain the connection between the form of the correlation ratio at the
system's output, under uncorrelated Input, and the character of the system's
specific transient proceass. For this we shall turn to the RC circuit examined
in the preceding section. Let there occur a stationary random process caused
by an uncorrelated fluctuating voltage in the circuit whilst the voltage across the capacitor
equals uy at the moment t1 (Figure 5). The voltage u, across on the capacitoratthe

can be regarded as the result of the superposition of two processes:

Yeang
Y T '

Figure 5. The character of the voltage at the output of
an RC circuit under fluctuating input

moment t2

uoul(t)
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1) the discharge of the capacitor through the resistance anc input source during
the time tz-t1 (determinate process), and 2) the simultaneous charging of the capacitor

by the input fluctuating voltage (random process).

Thus:

Uy = Ulc_."'_“)‘}_urand' (3 136)

Now, multiplying both aides of (3.138) by u, and taking the average we obtain:
Miaugh = M{alle 4 4 Miuu00a]. (3.137)

The left-hand side of (3.137) represents the second nm:oment of output voltage
mz(out) (tl' t2). We further have:

Mlai] =4, (3.138)
and

Mluung) =0. (3.139)

The latter relation results from the fact that at urcorrelated input there
i8 no correlation between the voltage U ond resulting from :nput fluctuations over the

period t and the voltage u, caused by these fluctuations at the moment t_.

27Y
Taking these considerations into account, one write equation (3,137} in the
following form:

mE (t, )=l e~ TH), (3. 140)

whence we have for the normalized correlation ratio of the output voltage

m™ (¢, 1)
Pout (Py, lg) = ’:—” — e-ulti-t)) t > 1), (3.141)

aoul

i.e., an expression which coincides with (3.115).

It follows from the given results that under an uncorrelated input, the
correlation at the output of the system results from some measure of resi-
dual response to the earlier applied input. This residua. response decreases
according toa law which coincides with that of the system's s»ecific transient process.

To conclude this section we would like to remark hat in §8 a random
function was mentioned, the arbitrarily near-in-time valves of which were
statistically independent. Such a function is uncorrelated and all the considerationa
given above are applicable to it. However, if the second mament has the form of
(3.128) this is not yet gufficient for inferring that there is ro statistical dependence,
Such an Inference is valid only for a normally distributed finction.

§ 17. The Problem of Two RC Circuits with a ({ommon Input

The aim of this and the following section is to give an illustration of the
investigation of random processes in linear systems by me‘hods given in this chapter
as applied to systems with several inputs and outputa. We shall now examine
the following problem. Two RC circuits are given in (Figure 6) with the para-
meters:
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1 1
R ot (3.142)

u, M ¢ I ur [t
L [
A
L, I ”oul’lv

4

b

Figure 6. Two RC circuits with a common input

A random voltage uin(t) of a correlation period much smaller than the time

constant of the circuits is applied simultaneocusly at the input of both circuits.
It is required to find an expression for the mixed second moment of the response at
both outputs of the system. As in the preceding section, we shall give a solution
of the stated problem by using each of the indicated three methods.

The behavior of the examined system is described by a system of two stochas-
tic differential equations of the first order:

duOU (’ 4
—;{'—i + @l ou 1 (1) = 215, (1), (3.143)
du (03]
—"5‘7’—— + gl 2 (£) == agu,, (1), (3.144)
Let the voltage Uoutl be taken at the time 1:1 and the voltage Uont2 at t2.
We then have for the sought-for mixed moment the following differential equation
( «37 + ")(o—?, +a) mit Py, k) = 2am” (4, 1), (3.145)

Applying formula (3.134), we obtain the double Laplace transform of the
second moment of the response.
24225
(P14 P (pi+ 2) o+ a))” (3.146)

Ry =

Returning to the original with respect to the variable p, wWe now obtain:

LIS
(Pr+a)(pa—ay)

Asgsuming t1 > t2 for the sake of definiteness, using the delay theorem of

';(’om I.?)(t“ Pz) — (c—'nﬂ—e‘h'n). (3 147)

operational calculus, and then returning to the original with respect to the varia-
ble p, we finally obtain:

a,a3
ay+ ay

By virtue of the full symmetry of both outputs in the case of {; >, we can
write without further calculation:

mP B, ) = Slesiti-t _ ot +uty) (1.48)
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fout 1, 2) aydy - - -
m t, —_ 21 a (-1} 0,1, +dyty)
2 )= S e I (3.149)
The obtained resultas (3.148) and (3. 149) are similar in some features to ex-
pression (3.109) obtained in the preceding section. We immediately notice they

satisfy the initial condition mz(o“'t 12 (0, 0)=0. Further both expressions have
two terms in square brackets, the first term being a funct:on only of the difference
(t1 - tz) and corresponding to a statlonary random process which approaches the

steady-state valuefor t. — 00 and t2 —» 00. The second term, on the other hand,

1
tends to zero in the same limit.

The nature of the statistical dependence between the responses can be easily
traced by writing out the expressions for the normalized correlation ratio of
response. From(3.148) and (3.149) in view of (3.125) we have in the steady state,
att; > t,

pou 1, 2(t1 1) = 2V a3, 0 t,- t),
+ #q

o (3.150)
at t, >t
2”4 —
2Va@y, o -
Pou 1. 2(fy, ty) =Tt oot (3.151)

As should have been expected, both expressions yleld the same result at
t, o=t
1 2 —
Pout max = 2_%-

a; 4 ag (3.152)

The strongest statistical dependence, which becomes functional in the limit.
occurs when a;, —+a; (p—+1). As can be seen from compairison of relations (3.150)
and (3, 151), the steady-state correlation ratio of both responses is not, in
distinction from the autocorrelation ratios of each response, an even function of
the difference (t t,). This may be readily comprehended by considerations
analogous to tho%e o?the derivations (3.136) - (3.141) of the preceding section.

Let us make the same calculations by the method of impulse characteristica.
For brevity we shall restrict ourselves to the case of gtationary random processes
at the system's outputs.

We shall uge expression (3.32) for our calculations, taking initn = 2, and,
taking into account the uncorrelated nature of the applied nput, we shall give it
a form analogous to (3.131). Then we shall obtain:

6 (3.153)
m D (¢ 1) =S fg, (ty— ) k2 (ty — 1) dt,

where tl > t2. -

By analogy to (3.119), the impulse characteristics o’ both circuits are expressed
as follows:

() =aeh L () = ae',
' ' ? a (3.154)
Now the computation of the integral of (3.153) glves:

[
m(‘oul 12) ¢t t)=S fale"-('~“'a,e"'“"”df = (3.155)

-0

%192 Go-ailt.~ty),

ot

i.e., a particular case of expression (3.148) for the stead) state.
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To conclude this section let us consider the calculation of the mixed moment
by the spectral method. Finding it amounts to computing the integral of (3.100)
wherein, in this case,

Ky (jo) = .l+,... ' (3.156)
KnUo) =775 (3.157)
Pa=3,  Fa(w) = Fon(jo)=0. (3.153)

Expressgion (3.100) assumes now the form

my " (2) = f K1 (Jw) Ky (jw) Fa, (w) 4°f dw = (3.159)

— gd_; i ™% don a,ay -
f @ —J9) @t o) m+ay Se=es.

However if t > t , then, keeping in mind the remark concerning equation
(3.100), we have:

+ 00

mi x.z)(z)..___% f Ku(jw)K;;(jw)F,,,(us)ef"dz=
+::;_ao J
a1, S [ “? do _ . agag .
7w ) (ar,ij)(a,_j..,)“a,.;..,s‘ f (3.160)

Thug, the gstated problem has been solved by each of the three methods set
forth in this chapter.

§ 18. The Problem of Two RC Circuits with a Common Output

The electric circuit in this section and the designation of its parameters
are shown in Figure 7. The left and right pairs of terminals will be regarded
as the two inputs, pointg a and b as the output. Random voltages of equal mean

squares ain are applied across the inputs, Each of these voltagesis stationary and un-

correlated, the second one being obtained from the first one by the introduction of
a delay time T.

A, e _A

”in/f’ oufl

[

Figure 7. Two RC circuits with a common output

By analogy to (3.128) we can express the second moment of each of the input
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voltages as:
m{ (1, 1) =S-3(t,—1)). (3.161)

The mixed moment of both input voltages is determined as follows:

mi () =S -8(t, —t,—T), (3.162)

where the voltage at the first input is taken at the tim: t, and the voltage atthe

1

second one —at t2. The objects of investigation are the¢ statistical properties

of the output voltage.

We ghall firat carry out the analysis of the random process by the method of
stochastic differential equations. The corresponding differential equation hag the
form:

duoul
—d‘ +(al+a!)uom == @&y Hin, +a2"u.- (3.163)

where
o o
M=RT 2T R (3.164)

Equation (3.163) of the given specific problem corregponds to the system of
equations (3.22) in the general case. In our case the number of inputs m = 2, the
number of outputs n = 1, the output reference number ass imed the fixed value i = 1,
the input reference number has two possible values j = 1, 2, Since the system has
degenerated into a single equation, one should take k = 1.

In the differential equation of type (3.24) enter for the second moment of the
response the operators;

AL a%, 4@ +a) A= 3‘}24— (a1 + @) (3.165)
mf.k.)=BLM)=B(m= a, Ui=Jr=1) (3.166)
BH“'"=B‘J"')= B =gq, (i=/r =2). (3.167)

In view of expressions (3.165), (3.166) and 3.167) w= shall write the mentioned
differential equation thus:

[#+ @+ o] [+ @+ ms @)=
= (al +a3) ma" (4. 1)+ 20,2,m37 (01, 1), (3.168)

We shall subject both sides of equation (3.168) to a :louble Laplace transfor-
mation with respect to the variables t1 and tz. We shall -ake into account expres-

sion (3.134) and also the fact that a computation similar to (3.133) yields:

= S T
m (P = s T (3.169)

The double transform of the second moment of re¢sponse can then be ex-
pressed as follows:
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(out) 1 !
@i P = (ai+ )P +r (P “lf‘"z)(ﬁr+'l+':’+

2 »T 1
+ ala’l’ +P:e (Pt +ad(pgta +ap)°

(3.170)

Assuming for definiteness t > t and applying the inverse transformation, we
obtain for t < T

M (.t ol aflem Gttt (3.171)

for t1 >T

(out) (. 1)) = ﬂa—_g;). laf + a: + QQIW-(-. +ay) 1" X

% |,-(-.+s.»(t.—t.)_,—(-.+-.i(f.+t.)|_ (3.172)

et us examine expressions (3.171) and (3.172). We note first that at t1 = t2
= (out)
= 0 we have m2
input voltages has no effect. One can easily convince oneself that (3.171) is the sum
of the momenta of output voltages resulting from each of the input voltages separate-
ly. The point is that in thig cage the second input is not yet affected by the fluctu-
ation impulges correlated with the voltage impulsges at the firgt input. At the time

tl = T the correlation appears and the second moment undergoes a jump-like in-

creage. The shorter the delay time T, the higher the relative value of this increase.

(tl, tz) = 0. Further, for t1 < T the correlation between the

If t1—> 00 and t2 -+ 00, while the time interval t = |¢, — #,| remains finite, ex-

presaion (3.172) assumes the form corresponding to a stationary random process:
out) S 2 2
m ) == a 20, 0,6 ~ (0 + %) T| o —(a +aadt, 3.173
(6] m[ 1+ 22+4-2a,a.¢ le ( )
If T = 0, we obtain from (3.173)
m& (1) = %(a, + a,) Se-ts+me, (3.174)
which coincides with the result for one circuit with the parameter a=- 1lj— 2,.
In fact, under these conditions we can connect in parallel the two inputs of the cir-
cuit, thus uniting the two circuits into one. .
We ghall carry out the same calculations by the method of impulse character-
igtics. For making the derivations shorter we ghall examine only a stationary ran-
dom process at the output of the system.

The impulse characteristics of the system are expressed as follows:

§i () = e~ +m0t, (3.175)

B12 (€) == gge (a4t (3.176)

The relations (3.175) and (3.176) can be easily obtained from differential equa-
tion (3.183), taking one of the inputs as a unit impulse and the other egqual to zero.

We shall use expression (3.39) to calculate the second momentof response. Since

only a stationary random process is considered, we shall take the lower integration
limits of this expression equal to — 00. If the moments are of the form (3.161)
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and (3.162) one can carry out derivations similar to those preceding formula (3.131)
and simplify (3.39) as follows:

t
m{ ¢, fz)=s[ f En(ti— 08, ¢t — 0 dt

t: 4
+ fEn(tg_ t)Eu(’]‘*" T—t)dt+ fEII(‘l+T—!)E11“2—t) d’+

&
+ fiu(f:—f)in(‘z—')‘”;- @G.177) (3.177)

Substituting the values of §;(f) and §;3(f) in (3.177- and integrating,

we obtain:

{out) —_ S
my () =g X
X [2} 4 a}+ 22,2, e Tl o= tav o it (3.178)

a result which colncides with (3.173).

i.e.,

In conclusion we shall show how to obtain expressicn (3.178) by the spectral
method. In accordance with (3.135)the spectral densitie of the applied inputs will
be

S
Fip(w)=Fi, (0)=+. (3.179)
The mutual spectral density of the inputs in (3.96) is in our case:
+o
1 I S jer
F,,(w):.—_-;- f S.a(')—*— l')e s d8=;e" . (3.180)
-0
The transfer ratios of the system are given by
- (3.181)
KnU)= 5,7
K —_—
"Uﬁ)—ﬂn'f"ri"]“ . (3.182)
The application of formula (3.97) gives now the following result:
( r of S
out) 1 .=
(1)_f(ﬂ;+01)°+0' ‘cosmtduw{—
+f -3 coswedu+
@ +a.) (ORI
+m
1 f [ a a | . ]
+7 ajtagtje ‘1+‘:-]‘"+ o, ta,—jo aytagtje X
—m
S fuT jur - @ra) T
Xo e e do = T(a, +' )[a,+a3+2a,a,e 14 l)(
(3.183)

W e~ (o o)t

which is identical with equation (3.173).
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Chapter Four

SOME LINEAR PROBLEMS IN THE THEORY OF RANDOM PROCESSES

§19. One-Dimensional Brownian Motion

In the absence of an external force field the one-dimensional Brownian motion
of a particle is deacribed, in accordance with the second law of Newton by the fol-
lowing differential equation

m‘—dl:—’-f-rv:f(t). (4.1)

where m and v are, respectively, the mass and the velocity of the particle, r is the
coefficient of friction encountered by the particle, f(t) is the projection of the total
force acting on the particle, as a result of molecular motion, on the direction along
which the motion of the particle is considered.

Equation (4.1) can also be expressed differently:
dv
E+°”=g(f): (4.2)

where the coefficient & is defined by Stokes's law:

= Oran
a=_—=. (4.3)
Here < is the radius of the particle and 7 is the viseesity coefficient of the
surrounding fluid.

Equation (4.2) is called the Langevin equation.

Since the function g(t) varies much more rapidly than the particle velocity,
this function can be considered as uncorrelated.

Equation (4.2) is entirely analogous to the equation (3.102), which describes a
random excitation of an RC circuit, Consequently, the already obtained result (3, 109)can
be used, In this connection one ought to take into account that because of the
noncorrelation of the input it must be assumed that § — co, and to note equa-
tion (3.124), as well ag the fact that the factor a of the equation (3.102) is missing
in the right-hand side of (4. 2). Having made these allowances, the second moment
of the particle velocity can be written asg follows: for t1>t2

m (1, t) = 5 leo ot — ettt = 3 o-et gy, (4.4)

for ty > & - S (o otthmty P S
m; (t..l,)=§;[e ) — g-ulh |=-;-e shat,. (4.5)
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Under steady-state fluctuation conditions the meaa square velocity of the
particle will be

=3 (4.6)

by analogy with (3.125),

For the determination of the quantity S we can use tie proposition of statistical
physics, which states that a system in a state of stationary thermal motion has a
mean energy of kT/2 for each degree of freedom [equipart tiontheorem]. In our case

ﬂlﬂ: 1
77
This relation in conjunction with (4.6) gives

RT. (4.7)

AT
§ =22t = 2227 (4.8)

To avold misunderstandings, let us recall that the function g(t) of {4.2) is equal
to

g0 =“—"?. (4.9)

Therefore, the quantity S, which characterizes the ntensity of molecular agi-
tation, depends not only on the parameters of the liquid bit also on the mass of the
particle.

If at the initial moment t=0 the particle was at the origin of the coordinates,
(x=0), then at the time t its position will be

t
x(t) = fv(r)dt. (4.10)
0

Expression (4.10) is an integral transformation of tie random function v(t).
This permits to obtain the mean square of the coordinate it the moment 1 in the
following way

t t
a‘,:ffm!;‘(t.,t,) dt, ;. (4.1
(1]

(V]

Let us calculate the inner integral of (4. 11):
t t, 1
fm!,"(:,.r,)dr, =f§¢—-v. shat, dt, +f%e' ot sh aty df, =
v t

—_--;—i{!—e""—e"shalz}. (4.12)
Now the calculation of the outer integral of (4.11) gives the following result:

ol= oy {2at— 3 de-el — o=, (4.13)

The obtained expression shows that the coordinate »{t) of the particle is esgen-
tially a nonstationary random function, Att=0 we have, as expected, =0
Will increasing t the mean square af. grows indefinitel,. This is explained by
the absence of a returning force.

If the time t is sufficiently long(af~>> |), then, in tae braces of(4.13)all
terms except the first can be neglected, and the formula 4. 13) reduces to
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(4.14)

With the use of previously obtained expressions (4.3) and (4.8) for the quantities
2 and S we can finally write

2 kT

<3_,,-=3m"1 . (4.15)

This result was first obtained by other methods, by A. Einstein. The experi-
mental check by J, Perrin gave satisfactory agreement,

§ 20. Thermal Noise in Electric Circuits

It is known that a random thermal motion in the conductors of any electric cir-
cuit gives rise to fluctuating currents and voltages, which are often called noise.
For calculation of the correlation functions of thege fluctuations,any of the mcthods
considered in the previous chapter can be used. But any one of them must be sup-
plemented by a method for calculating the intensity of the fluctuations.

Figure 8. Elementary RC circuit

Let us consider the intensity of electrical fluctuations in an elementary RC circuit
(Figure 8). We shall assume equipartition, as in the foregoing section, i.e.,
that in any system which is in thermal motion the mean energy of fluctuation
is equal to kT/2 for each degree of freedom. In our case the state of the system
is completely characterized by a single coordinate: thevoltageuacross the circuit, We

have, therefore:
! kT, (4.16)

1 n2 b
7 Cou=73

where :,2, is the mean square of the voltage across the circuit.
From (4.6) we obtzin:

kT
aﬁz_c_, (4.17)

The fluctuating voltage u can be consicered as originating from an equivalent
generator with a random electromotive force e(t), which has been connected in series
with the circuit (Figure 9). Since the thermal motion in the conductors is extremely rapid

the electromotive force e(t) is considered as uncorrelated.

For an uncorrelated random excitation of an RC circuit we obtained in § 15 the
equation (3.118), which we shall write here in the following form:

2 I
— 4.
% = 5pE S. (4.18)



From (4.17) and (4.18) we obtain

S =2ATR. (4.19)

The spectral density of the electromotive force e(t) s, in accordance with
(3.135), equal to

Fo)=2 1R, (4.20)

Figure 9. Simulation of electrical fluctiations
in an RC circuit by introduct.on of
an equivalent uncorrelated electro-
motive force

Formula (4.20) for the spectral density of a fluctuat:ng electromotive force
was first obtained by H. Nyquist /12/ . The substance of Nyquigt's considerations
is also expounded in the book of S. Goldman /13/ . The an 1lysis given by these two
authors is considerably more complicated than ours. But :t is more rigorous since
unlike us, they do not make the a priori assumption of incorrelatedness of the
random electromotive force.

)

Let us clarify which of the elements of the RC circuit (Figure 8) is the
source of fluctuations, We initially assume that the fluctuations are generated in the
resistance as well as in the capacitor. Then it can be said that the random electro-
motive force e(t) (Figure 9) canbe considered as the sum of two electromotive forces
eR(t) and ec(t), of which the first corresponds to fluctuatio:s generated in the
resistance, andthe second to the fluctuations originating in the capacitor (Figure 10).

As the capacitor is a reactance, the power produced in it by the electromotive
force of the resistance is zero, i.e., the resistance does nst transmit {ts thermal
motion to the capacitor. Therefore, the agsumption of a nc nvanishing fluctuation
electromotive forece e (t) in the capacitor, leads to the congequence that the

resistance is continuously heated by fluctuation currents generated in the capa-
citor, i.e., its temperature must increase beyond all lizaits. This consequence
contradicts the law of energy conservation. The circum istance that through the
resistance R flows its own noise current does not lead t> a change in its tem-
perature, as the energy of this current is taken from the e¢nergy of thermal motion
and i{s transformed back into heat.

Thus, the only source of the fluctuations is the resistanc:. Thesame considera-
tions could be repeated after replacing the capacitance by an inductance., Thus,
reactive components do not produce noise . These result: can be applied to any
resistances and reactances in a composite electric circuit.
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Figure 10. Resolution of the equivalent fluctuating
electromotive force into two components

§ 21. Thermal Noise in an Electric Oscillation Circuit

The above results can be used for calculating the thermal noise voltage in an
electric oscillation circuit (Figure 11). Accordingto what has been said in the fore-
going section, the only source of the fluctuations in the circuit is the resistance r.
The "noigy" resistance r canbe represented as a "'noigeless’ resistance of the same
value in series with an uncorrelated noise electromotive force of spectral density

Fioy=2&Tr. (4.21)

Then the equivalent circuitof Figure 12 can be used for the calculation of the
noise voltage u.

Figure 11. Electric oscillation circuit

The transfer ratio of the noise electromotive force is

1/joC il (4.22)

K (jw)= 7 jol ¥ 1/juC ,_.;_m2+j2=w.

where wy = 1/ Vlf is the natural frequency of the circuitand z =r/2L the damping factor

The square of the modulus of the transfer ratio will be:
]

K(jo)t = ——2 . (4.23
| (j“')l ' — m5)2+4a’w’ )

The spectral density of the noise voltage u in the circuit is determined from
(4.21) and (4.23) in the following way:
4

__ T “n 4.24
F“(w)——“—r(w'—uz)z-{—la’w" ( )
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Let us examine the structure of this equation. First. we shall determine
the effective component of the equivalent resistance of the zircuit (Figure 11).

©

 Re [+ Joly juC ] _ :
Rl =Re [t ] = g v “.29)

By combining the equations (4.24) and (4. 25) we obtain for the first of them
the following simple form:

Fu(w)=2 kT R(w). (4.26)

A comparison of (4.26) with (4.20) shows that the e:pression (4.20) can be
used in the calculation of the noise electromotive force ae the effective resistance
ag well as the effective component of the complex resistance.

If the Q-factor (Q=w, L/r) is sufficiently high, the effective component R (u)
of the equivalent resistance of the circuit and the spectral density Fu (w) of the noige

voltage, which is proportional to R(m), have a sharp maximum at a frequency prac-
tically equal to the natural frequency w, of the circuit. This maximum is the sharper

the higher the Q-factor. Thus,with a high Q, the main part of the fluctuation
energy is concentrated in a narrow frequency band, cen-ered aboutabout the natural
frequency w, of the circuit. This means, that under the indicated conditions the

fluctuations resemble harmonic oscillations having the nitural frequency of the
circuit,

Using expressions (3.63) and (4.24) let us compute the second moment of the
noige voltage across the circuit:

(=]
mP (= f F,(®)coswtdw =
[
RTrad [ COSwtde
= L] f(m’ — u:)z + 4att -
v
=27 - (cos 0T + — sin w,1), (4.27)
[4 ™
w =} w2 —a2

The mean square of this voltage can be found by assuming t =0 in (4.27)

where

9= < (4.28)

Figure 12. Simulation of electrical fluctuations in an oscillation circuit
by an equivalent uncorrelated electromotive force
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If only the last result were required, it could h.
from the moration , ave been obtained immediately

2
Coy =  kT. (4.29)

S
Wl -

which ig known from the foregoing sections.
Let us continue the examination of equation (4, 27). Noting that the quantities
2 and w, are connected by the obvious relation
@0

1
¢=7Q (4.30)

and agsuming that the Q-factor of the circuit is sufficiently high (generally Q> 100),
(4. 27) can be simplified to
(%) 2 —at
my (t)=0,e"""COS W,yT. (4.31)

In order to grasp the meaning of this equation we shall consider the
harmonic oscillation

x (1) = Xcos(wyf + ). (4.32)

where ¢ is the random initial phase, all values of which are equally probable. Under
this assumption the second moment of the oscillation can be calculated as follows:

w4 )= MIx ) X)) =
= MXcos (af, + 7) - €08 (ot + 9| =
= 1 X2 [Mcos wg(ts— 1)) =+ M Lcos [wo i+ 1)+ 2¢]))
(4.33)

and finally

m () =m (x) = 1 X?cos wyt = ok cos wgr, (4.34)
X2

~|

[

where =|ty— 4] o

As pointed out above, the voltage fluctuations in a circuit with a high Q-factor
are nearly harmonic oscillations. They contain, however, a certain random
element. The larger the random element the weaker is, at fixed T, the statistical
dependence and the smaller its quantitative measure- the second moment mg('ﬂ(t).This
randomness of the oscillatory process can be accounted for by introducing into the
equation (4.34) the factor $(z), which i8 equal to unity at t= 0, and decreases with
increasing 1. Thus we obtain

m{(x) =3 § (x) cos wyr. (4.35)
Equation (4.35) is typical of those stationary random process which closely
resemble harmonic oscillations. In particular, of such a form is the second moment
of the fluctuations at the output of any gelective gsystem, i.e., asystem with sufficient-
tly sharp resonance properties, which is subjected to an uncorrelated input. The
form of the function ¢(x) is determined by the gtructure of the gystem.
For a single oscillation circuit we obtain from (4, 31):

ylry=e"" (4.36)
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It follows from previous considerations that the damping factor a entering
(4. 36) characterizes the degree of randomness of the fluctiations.

The character of voltage fluctuations in an oscillation: circuit or at the output
of any selective system can be easily found from purely qualitative considerations,
by following the method of impulse characteristica. As already remarked in § 13,
an uncorrelated input can be considered as a succession of ‘mpulse functions with un-
correlated areas, following immediately upon each other. 4 single needle-shaped
input pulse imparts to the circuit a certain store of ene.'gy, initiating damped
oscillations of frequencyw,. The resulting process is the sum of infinitely
many elementary oscillations of this kind. The oscillations from previous pulses are
attenuated, but the energy of the fluctuations is replenished by newly produced oscil-
lations. The sum of any number of oscillations of same frequency w, is also an
oscillation of the same frequency w,.

Since the initial amplitudes of the continually arising elementary oscillation
processes change at random from one process to another, the amplitude and the phase
of the resulting oscillation are also continually fluctuating, i.e., they are random
functions of time.

If the statistical properties of the instantaneous noise voltage are known, the
statistical properties of the random amplitudes and phases > the fluctuation process
can be investigated. But this necessitates the use of nonlinzar transformations of
random functions, which we have not yet considered. We fostpone, therefore, the
further consideration of the above problem to the sixth chapter.

§ 22. Thermal Motion of a Galvanometer

When working with highly sensitive galvanometersonel as to take into account
that the moving system of the instrument is in a state o! incessant agitation,
analogous to the Brownian motion, which renders very d.fficult the measurement
of very small currents. This motion is caused, on the one hand, by the molecular
motion of the air surrounding the system, and on the other iand by the electric fluc-
tuation currents in the galvanometer coil.

We shall consider first the random fluctuations of the moving syatem of the
instrument, with the circuitof its coil open. Then no curreat flows through the coil
and the behavior of the galvanometer can be described by the usual differential equa-
tion of torsional oscillations

a0 0
’2?1+’11_:+D°=M(')' (4.37)

where 8 is the deflection angle of the moving system of the ins:rument, I - its moment

of inertia, r - the coefficient of friction, D - the rigidity of suspension, and M(t) - the
random torque exerted on the moving system by the molecu.ar motion of the sur-
rounding medium. It is natural to consider the random function M (t) as uncorrelated.
We shall examine only stationary fluctuation conditions, using the method of im-

pulse characteristics.

Assuming the right-hand side of equation (4.37) to be 1 unit impulse functionand
applying to both sides of this equation the Laplace transforriation, we obtain the fol-
lowing expresgion, representing the impulse characteristic of the galvanometer:

= 1
b= —————— (4.38)
2 pPl+pr+ D
and by introducing 2= r/2I - the coefficiel;lt of damping, v, == VD/I-the natural fre-
quency of the moving system, f? = a? — wy, we obtain

0(p)=-——————ll(p-ra),_ﬁ,l. (4. 39)
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In the following, only the aperiodic case of the motion will be considered,
when at > w;. i,e., B2>0. Then the inverse transformation of (4, 39)gives

0¢r) =—l—é-e-"sh pe. (4.40)

For the calculation of the second moment of the angle § we use equation
(3.132). Substituting in its right-hand side the expression (4.40) for the impulsechar-
acteristic of the instrument and integrating, we obtain

m () = 555 e+ (ch B+ 5 shBl <) (4.41)
Assuming in (4.41) t=0, we obtain the mean square of the angle §:
2_ S
9y = %D " (4.42)

To find the value of the unknown'quantity S we shall apply the same method as
in foregoing sections. The component of the mean fluctuation energy with respect
to the coordinatelis

1 2 1
?D0.=Tk‘r. (4.43)

Combining (4.42) and (4. 43) we get

S = 2kTr. (4.44)

The obtained result callg for two comments. First, its similarity to the
formula (4.19), which was obtained in § 20 for the noise electromotive force of the
resistance, shouldbe noted. Second, we note the double role played by the medium
which surrounds the moving gystem of the instrument. On the one hand the medium
opposes the motion with a moment proportional to the coefficient of friction r, on the
other hand it causes the random torque M(t), whose value S is proportional to the same
coefficient r.

In view of equation (4. 44) we can put relation (4.41) into its final form:

m‘,'"(:):foie""'(chpt+ %shplrl). (4.45)

As a check on this result let us calculate the component of the mean energy with
respect to the other independent coordinate of the moving system - the angular rota-
tion velocity w=dh/dt. As was shown in § 7, on differentiating a random function,
its second moment is differentiated twice. If the differentiated function is stationary,
as in the present case, thig differentiation is done with respect to the time interval
¢ and the obtained value is taken with the opposite sign (formula (2.41)). Thus:

d’mm('c)
() 2
m; (1) __T_ (4.46)
Differentiating twice and then putting t=0 we obtain:
2 kT (4.47)

0w =7
The mean energy of fluctuation along the coordinate o is, as expected,

1,2 1
7‘[0.:—5 RT. (4.48)
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Figure 13. Moving system of a gal-'anometer
in a magnetic field

So far we agsumed that the circuit of the galvanometer coil is open. Now let
us suppose this circuit to be closed by the resistance R, For simplicity we shall as-
sume R to be so large, that the resistance of the coil and the action of its self-
induced electromotive force can be neglected. First we grall examine the motion
of the moving system of the instrument as caused by the action of the surrounding
medium. In that case the closing of the circuit should be ccnsidered only as equiva-
lent to the appearance of an additional retarding moment, ciwsed by the current in-
duced in the coil.

Let us calculate the electromotive force induced in the coil by the rotation of
the moving system. For this we shall use Figure 13. The ‘ield in the gap of the
magnetic circuit of the instrument can be consldered as rad:al, in a first approxima-
tion. In addition, it can be assumed that on rotation of the coil, its sides parallel to
the axes move in a uniform magnetic field, Let v be the velocity of this movement,

n the number of windings of the coil, and B the magnetic incuction in the gap (other
designations are shown in the figure). Then the induced ele :tromotive force is

e=28Blvn. (4.49)
Since the velocity v is expressed by the angular velocity of rotation as follows:

[ b 49
_— = — 4.50
v=wg=g5_r, ( )

formula (4.49) can be given its final form:

de

¢=A7,

(4.51)
where

A = Bibn. (4.52)

Under the above assumptions this electromotive force generates in the
circuit of the instrument the current

(=t A (4.53)



Interacting with the magnetic field,the current i generates the retarding torque

A 40
Mret = Bilnb = Al :“E- ’7. (4.54)
By introducing into the left-hand side of differential equation (4.37) the addition-
al retarding torque (4.54), we obtain:

a0 dy
Here
,'=r+%'_. (4.56)

The statistical characteristics of the right side of (4.37), as expressed by the
formula (4.44), remains unchanged. Therefore, without further calculation, we
can use the ready result (4.41), by replacing it in r by r' and retaining the previous
value of S, as expressed by formula (4.44). Thus

o KT 1 s ’
m$ ()= S e I(chfj’r-{—h;shﬁ'lt[), (4.57)
where
rl
=or F=Var_uj (4.58)

For the mean square of the fluctuations of the angle 8, whichareproducedby the
molecular motion of the medium surrounding the galvanometer, we obtain:

2 kT r
=D (4.59)

The mean square of the fluctuations due to thermal motion of the medium is
thus seen to decrease owing to the retarding torque of the forces on the induced
current.

Let us now examine the random oscillations of the angle 8, which are produced
by the electromotive force ej(t), generated in the resistance R. The random torque,
generated by the action of this electromotive force, is equal to

M ()= Al ()= % e, (f). {4.60)

In accordance with § 20 this electromotive force can be considered as uncor-
related, and its magnitude Sel ig expressed by formula (4.19). Therefore, the torque

Ml(t) must be also considered as uncorrelated, and its magnitude SM, is determined
by:
A

SM1= £Se|=2kT
R R (4.61)

The random function 8, satisfies the differential equation (4.55), in

the right-hand side of which the torque My(t) replaces the torque M(t). Therefore,
the expression (4.41) in which r' replaces r and the quantity S is defined by formula
(4.61) is valid for the second moment of the random angle 4,. Thus,

m = Z’;‘f; e=vIsl(ch B+ -;—,,— shf'|t]). (4.62)
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The mean square of the fluctuations of the angle 0, i+ equal to

2 kT A?
::.‘_W. (4.63)

Th= random angles §, and 0, are statistically indeperdent of each other. There-
fore the mean square of the resulting angle0 -= i,  6,i8 ostained from (4.56), (4.59)
and (4.63) as follows

2 2 RTr RTA* kT Ay
% =0, + %, = pp +37F—D—r'(’+7f)—73" (4.64)

i.e., the mean energy of the fluctuations along the coordin:te l is, as before, equal
to
Ds, | &r
7 =75 0=

kT, (4.65)

| —~

Thus, closing of circuit of the galvanometer has no influence on the
mean square of the fluctuations of the angle § . In other words, whatever the mech-
anism of the transfer of thermal motion to the system, the mean square of its fluctu-
ations along each of the independent coordinates remains unchanged.

From this constancy of the mean square of fluctuations in no way follows
that the character of the random motion of the moving system of the instrument is
independent of the quantity a’. This can be easily seen by considering the
gpectral density of fluctuationa. Their second moment car be represented as follows,
in accordance with the results obtained above:

m® (1) = o= 17! (ch p’:+;—: sh a’|z]) (4.66)

By substituting this expression in formula (3.62) and :ntegrating, we obtain after
some simple transformations:

1

PR SUS— (4.67)
(F =)+ e

Fy(w) = —:« a'wgss

Introducing the dimensionless frequency £ == w/w, and the damping factor
d= 21" «, we obtain finally:

Fy) = 2 ui., ode (t. ). (4.68)
where
1
PO D= T (4.69)

The function 9 { §,d) characterizes the dependence of the spectral denasity of
fluctuations on the frequency. The graph of this dependenc= is shown in Figure 14.
It can be seen from it that at sufficiently small damping factors d(galvanometer
circuit open, friction coefficient r small) the spectral dens:ty of fluctuations has a
sharp maximum in the range of frequencies near the natural frequency of the moving
gystem. In other words, the character of fluctuations is similar to the character of
harmonic oscillations of frequency w,. On the other hanc, for large values of the

damping factor, the fluctuations have a highly random char..cter.

The thermal motion of measuring instruments and its influence on the accuracy
of measurement are considered in detail in the monograph by V.L. Granovskii {14/,
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Figure 14. Spectral density of galvanometer fluctuations
as a function of frequency

§ 23. The Passage of Irregular Telegraph Signals through a Linear Filter

Let us consider a telegraph signal consisting of a sequence of elements of
two kinds (so called binary transmission). The simplest element of the signal
is a rectangular pulse of amplitude A and duration T. We assume that all pulses
follow directly upon each other, have equal characteristic parameters A and T, but
can have with equal likelihood pogitive or negative sign. Moreover, we agsume that
the signs of individual pulses are statistically independent of each other. This is
the simplest mathematical model of a telegraph gignal, which we shall adopt in the
following considerationg.

Letusfind the second moment of such a signala(t). At v>T, by virtue of the sta-
tistical independence of the signs of two neighboring, non-simultaneous pulses, we have:

m{ (1) =Mla(f) - a(t )] =0. (4.70)

Let now 1 { T. We choose a certain time moment t, contained by one of
the pulses. Let us assume that the time interval between the beginning of this pulse
and the moment t is arandom variable, which can have with equal probability any
value between zero and T. A later moment t +t can fall within the same pulse
or the next one. The first case takes place if 0 <t < T—=1. We have

Mla(t)-a(t 1)) = A2 (4.71)

T—x 13
The probability of the first case is equal to —F— = I — ++ Hence if
T -t <t < T, the time moment t + t is contained by the next pulse. Then

Mla(tya(t + 1] =0. (4.72)

The probability of the second case is ©/T. Averaging the product a(t).a(t+ 1)
over all possible initial positions of the pulse, we have :

m;av(:)zm(l ——'T-)--{-O-%:A’(l —%) (4.73)

Since all the pulges are completely equivalent, this result is valid for the inclu-
sion of the time moment t within any of the pulses. Thus, (4,73) is the
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sought-for expreasion for the second moment of the telegraph signal. The mean

square of the signal ordinate is 3% = A2, Therefore, formula (4.73) can be written
as follows:

mio () = 3 (1 _%) (4.74)

ler/

R
t— [ ——o
Figure 15. Graph of the second moment

of an irregular telegraph signal

The graph corresponding to equation (4. 74) is shown in Figure 15, Using
the formula (3.62) we find the spectral density of the signal

T
F(w)=%f c’(l —%)coswrdr:
v

2 ,1—coswt
=;°2—“’Tf——. (4.75)

The spectrum of the signal is shown in Figure 16. We have now obtained the
necessary statistical characteristics of the signal and can proceed to the analysis of
its action on a linear filter.

o twl

S A A

Figure 16. Graph of the spectral density of
an irregular telegraph signal

Let us consider an RC circuit (Figure 2) as the simplest filter. Itsbehav-
ior is described by the differential equation (3.102).

The filter causes distortions of the signal, i. e., the e appears a certain error
¢(I)=ucu( (”"’"in(’)v (4-76)

which is, as the two terms of the right-hand sideof(4.76), : random timie-function.

&

We can use the mean square a': of the error ¢(t) as a measure of the distortion.

Let us write the differential equation (3.102) as follows:

dlug, —u,) di
—&d‘_l__i_a(uom ...um)=_. ..-";l (4.77)
or, differently,

d du;
.d_:+ag=_ dln. (4.78)
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We shall use the spectral method. Then we have to calculate the frequency
characteristic of the filter error. For this we assume

g, =U,e!™, e=Eeit (4.79)

and substitute these values into the equation. We get:

JoE + aE = — jull,,, (4.80)
whence
R £ _ Jw
K(jo)y= T (4.81)

The square of the modulus of the frequency characteristic of the error is
equal to

w?
Ko = (4.82)
The spectral density of the error is expressed as:

%? | —coswl

F,(w)=PF,, (w)-lKUm)I’=7'—“z+—ma—- (4.83)

The mean square of the error is:
(=]

. r 242 1 —cos T o? .

o= f Fe(wydw=—x f —dya de=F(—e=D gy
] 0

The relative root mean square error is defined as follows:

n="t=y #(l—e-'f). (4.85)

We introduce the pass band Af, ; of the circuit, by which we shall understand

the frequency band in which the modulus of its transfer ratio (3,130) is not less
than 1 l/').. It can be readily seen that to the upper limit of this band corresponds the
angular frequency wy ;= 2, Whence we have:

bfon =z (4.86)

Now, expression (4.85) can be brought into following form:

[ -2f, . T
1=V gpr (1 —e o). (4.87)
If the pass band of the filter Af, ; = 0, then the relative error becomes®= 1,

i. e., the signal is not reproduced at the output of the circuit. At Afo.., — 00 we have

n— 0, i,e., the error tends to zero, The dependence of the relative error
on the product Af, ;T is shown in Table 1.

Table 1
AfosT 0.0 0.1 02 03 04 0.5
" 1.00 0,87 0.76 0,67 0.59 0.55

AtAf, ., T > 0,5 the value of 7 can be calculated by the approximate formula
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1
= ) (4.88)
ke >~y s 4

with an error of less than 2%.

Taking %= 0.3 (about 10% of the signal power), we obtain from (4.88):

Afy T2 1.8. (4.89)

It is generally assumed that, for a satisfactory reproduction of the form of a
telegraph signal with continually alternating signs of the pulses, the filter must let
through the third harmonic of the basic frequency of the signal. The basic frequency
of such a signal is equal to 1/2T. Thus we obtain:

3o =Afor or Afg,T=15, (4.90)
i.e., a result which is close to (4, 89).

Let us now consider the mean square error of such a filter, which results
if, in addition to the useful signal, an uncorrelated noise of spectral density Fy is
applied to its input. Since the signal and the noise represent processes which are
statistically independent of each other, the mean square o2 of the resulting error
can be expressed, in view of (3.118), (3.135) and (4.84) as follows:

2 o* T > F
-] ="°T(1-—t )+7a,,. (4.91)

0

whence we obtain for the relative root mean square error

. i
w="2=) Ld—eT)tara, (4.92)
where
A==l (4.93)
2 T

Let us trace the connection between the resulting er-or and the pass band
width, i.e., the quantity aT. If the pass band is narrow, the main component os
the error is produced by the distortions, caused by the filter, asthe mean square of
the noise at the output is small. Conversely, if thepassbanliswide, the distortions
mentioned above are insignificant, but the mean square of tie noise voltage at the out-
put increases in proportion to the band width.

From these considerations one could expect that it i; possible, under certain
conditions, to realize a most advantageous pass band, whicii would ensure a minimum

value of error. Referring to the extremalvalues of expression (4.92), the mini-
mum of the relative error M, can be readily obtained for the condition

I—a ~-oP
A= —(HTP'— (4.94)

From this expression Table 2 has been constructed jor optimal valuesof a T,

Table 2

(anoptollileals

A 1.00 l 0.26

72



At (JtT)Opt > 5 one can set, with an error of less than 4%:

A=~ ’ 4,95
(2 T)ip, ( )
whencelt can be con
1
@T)op = i (4.986)

It can be concluded from these results that the higher the relative noise level
A at the input of the filter,the narrower the optimal pass band. At A> 1 no optimal
band exists.

In view of relation {4.89), to which correspondsaT= 11.3, we conclude that
large values of 2T, for which formula (4.96) is valid, are of practical interest. Sub-
stituting the value for 2T obtained from (4.96) into (4.92), and taking into consider-
ation that fora T >5 the exponential term can be neglected, we obtain:

4
nmn=V2VA. (4.97)

Given the required value of %,min we canfind from this expression the corres-
ponding value of A. With known level of the noise and the desired duration of the sig-
nal, i.e., the speed of transmission, this permits tc obtain, with the help of (4.93),
the necegsary level of the useful signal at the input, and also to find from (4.96) the
optimal pass band of the filter.

The foregoing was an example of the analysis of a specific system, from the
point of view of the root mean square error, sufferedin it bya signal. The criterion of
root mean square error was introduced into the theory of random processes by
A.N. Kolmogorov /15, 16/ and was applied to a number of practical problems by
N. Wiener /17/. At the present time, this criterion of quality of a system finds an
ever increasing application, especially in the theory of automatic control /18,19/ .
But it should be in no way considered universal. This is seen, for instance, from
the following example. In pulse radar for long distance detection it is desirable
to be able to detect the weakest reflected pulses against the background of
fluctuation noises, Here the distortion of the pulse shape at reception is a second-
ary factor only, as it is first of all important to ensure that the peak value
of the signal should surpass the noise as much as possible.

§ 24, The Optimal Filter Problem

The linear problems of the theory of random processes, as cbnsidered in
previous sections, are characterized by the following statement of the problem:
given a specific system and its parameters, as well as a sufficiently complete sta-
tistical characterization of the input; to calculate the responses of the system to
this input. These problems may be classified as belonging to the analysis of sys-
tems under random excitation.

In all cases, except the one considered in §23, onlythe responseto random
input was considered, and no conclusions about the desirable values of the para-
meters of these systen.s were drawn. But from the point of view of classification
of problems this fact is not essential.

Besides the problems of analysis, problems of synthesis of systems subject
to random excitation are also of great interest to the modern technology of auto-
matic control. In these problems the structure of the system is not defined,
and the totality of all possible systems of a certain class (e, g., the class of
linear systems) is considered. It is required to choose from this class the
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optimalsystem(e. g., from the point of view of minimum root :nean square error), This
problem was first considered in its general formulation b A. N. Kolmogorov /16/,
Results important for practical applications were also ob:ained by N. Wiener /17/.
A clear and comparatively simple presentation of the corresponding mathematical
questions was given in the comprehensive article by A. M. 7aglom /3/. The same
problem was considered in the monograph of V. V, Solodovrikov/19/ and in the later
works of V. S. Pugachev /20, 21,22,23/. Wewillgive here only one simple particular
example for the synthesis of an optimal system, which ensures minimum root mean
square error of reproduction for a useful signal of specific shape and uncorrelated
fluctuations at the input,

As the signal we take an input with the following properties. The voltage uc(t)
can take either of two discrete values +U and —U. The mecan number of changes
of sign of the signal per unit of time is denoted by n. "he instants of signchange
are random, and the probability for k sign changes during t1e period t follows the
Poisson distribution

LUy (4.98)

W(k):T

We remark, that the Poisson law is met with in many statistical problems, in
particular in the theory of electron emission by hot cathodes. I[fthe mean number
of electrons emitted by the cathode in unit timeis n, and the individual electrons are
equally likely to leave the cathode at any time and do s» independently of each
other, then the probability for emission of k electrons ty the cathode in time
v is expressed by the same formula (4.98).

Let us find the second moment of the signal. The vidue of the product uc(t)-
-uc(t+ t) is equal to U2, if during the time v the number of s:gn changes has been even,
and equal to -u2 for an uneven number. We have, therefors=,

mP ) =U WO+ WQ)+WMH+ ...]-
— W)+ WE)+WEH 4 ...

(4.99)
or, substituting the value of W(k) from (4.98) , we obtain
m({,(,)=uz,-m(| _'l'_:+ ("2“)‘ - ("3‘!)’ 4 ... )=U%-m,  (4.100)

Let us now formulate our problem. At the input ¢f the linear electrical
system acts a stationary random excitation consisting of the signal u_ and the
fluctuation noise o ¢

u () = ue(f) + u, (). (4.101)

The second moment of the signal is given by the expression (4.10G0) and
the noise is uncorrelated, The voltage u,(t) at the outpu: of the system re-
produces the signal uc(t) with a certain error

8 () = uy()—u, (1) (4.102)
whose mean square is equal to
of = of + ot — 2mE (0). (4.103)
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where m(z2

voltage, calculated for the two voltages considered as functions of the same
time argument.

c)(0) is the mixed moment of the input signal voltage and the output

The mean square error af ig determined, on the one hand by the external in-
fluences, and on the other hand by the structure and the parameters of the system
which are unknown. The problem consists in finding the structure and the parameters
of the linear system which would ensure a minimum mean square error under given
external conditions.

Let us set up the explicit expression for the mean square error. The mean
square of the voltage at the output of the system will be determined by formula (3.30)
in which we set tl = t2 =0 and the lower integration limits as equal to — .o

o o
G= [ [md(—6)t(—~1)s(—tydr, dr, (4.104)
-0 -00
By change of integration variables t'1= -Xx, t'2= ~y, equation (4. 104) assumes
the following form:

o«

angs(y)dyfm‘z"(y—x)z(x)dx. (4.105)
(U (1)

For computing the mixed moment m2(2°)(o) let us write the integral trans-
formation which determines the response of the system

/] o«

1, (0) = fu,(f)i(—-t)dt.—_-ful(x)i(x)dx. (4.106)

-0 0

(2

The moment m2 c)(O) can be considered as the mixed moment of two linear

transforms of random functions, the firstof which being defined by the expression (4.106)
and the second consisting of the product of the random function u.(t) and unity. Having
in view the general formula (2.73) we obtain:

my (0) :fm',"'(x)&(x)dx. (4.107)

v

where m2(1°)(o) ig the mixed moment of the voltages ul(t) and uc(t), which, because

of the statistical independence of the signal and the noise, is equal to
my) (x) = m{? (x). (4.108)

In view of equations (4.105), (4.107) and (4.108), we can now write the mean
square of the error in the following way:

d=al—2 [ mP ()t dx +
[\
+fa(y)dyfm‘,”(y—x)z(x)dx. (4.109)
() [}

Relation (4.109) is valid for any form of the moment functions of signal
and noise. Only their statistical independence is necessary, in which case follows
(4.108) which we used above.
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The mean square of the error (4.109) depends on tne form of the impulse char-
actemsuc (x) of the syatem. First one has to find such a functiont(x), for which the
quantity a. has a minimum. Problems of this kind are dealt with by the variational
calculus, whose methods we shall use. Then, once the iripulse characteristic of the
optimal system is known, one has to determine the structire and the parameters of
this system.

For determination of the impulse characteristic of the optimal system we shall
proceed in the following way. Let us assume that the minimum of the mean square
error is obtained for the impulse characteristic Ey(x). W= shall replace in the
expression (4.109) the function (x) by the function Eo{x)+ yn(x), where n(x) is
some function which vanishes for x <0 and is otherwise arbitrary, and v is a pa-
rameter independent of x. The indicated operation of the calculus of variations is
equivalent to anincreaseof x by Ax in differential calculus.

After this substitution it is easily found from (4. .09) that the departure
[variation] of the mean square error from its minimun: &fuals

50: =2~‘1 fm(c)(x)n(x)dx+
+fn(y)dyfm‘z"(y-x)so(x)dx} +

+ 1t fn(y)dyfrn“’(y —x)n(x)dx. (4.110)

The necessary condition for the extremum of the cuantity a. is analoguous to
the corresponding condition for extrema of functions of o1 e independent variable,

and it has the form
[d_(_'_"z_).] =0 (4.111)
d'( 1m0

for an arbitrary function f(x).

By carrying out operation (4.111),we obtain:

f """’(x)n(x)dx—f 2 () dy f mi) (y—x) % (x) dx=0 (4.112)

fn(y)dy[m - f'""’(y—x)a,(x)dx]=0. (4.113)

o

Since the functionn(x) is arbitrary, condition (4.1’ 3) can be fulfilled only for
‘°’<y>—jm‘"u Dhdx (0 < oo). (4.114)

Such a condition is necessary for the mean squar: error to be a minimum. It
can be proved that this condition is also sufficient.

Equation (4.114) is Fredholm' s integral equation of the first kind. For the
general case it is relatively difficult to obtain its solutio1. Therefore, we terminate
our calculation of the general case by the obtained result, and turn our attentionto
the specific problem, as formulated at the beginning of tiis section, for which a
gsolution can be obtained by simpler means.

(c) (1)

The moment my, ~ is expressed by formula (4.10)). The moment m, ° of
the input voltage consists, because of the statistical independence of the signal
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and the noise, of the sum of their moments, which we can write in view of expres-
sions {3.128) and (4.100), in the following way:

m(y — x)=Ue-Pl¥-714 S8 (y —x), (4.115)

where 3 = 2n. Let us substitute in the integral equation (4.114) the indicated values
for the moments. Then, in view of

fSB(y—x)&,(x)dx:SEo(y), (4.1186)
we have: 0
U=e—au=se,,(y)+uzfe—ﬂlv—rleo(x)dx. (4.117)

v

Equation (4.117) is Fredholm' s integral equation of the second kind. Let us
apply to both members of this equation the Laplace transformation. The trans-
form of the definite integral, in the right-hand member of (4.117), is equal to

o o

f(‘l’vdyfe"ly~-t|§o(x)dx=
0

[

=fE‘,(x)dxfe"Nl'--ﬂe-Pvdy=
Q o
x

-] o
=f£o(.r)dx fe—w—uve-ndy+J‘e-w»z),-ndy =
[} x

[}

=7 -l-ﬁ ft‘ﬁ"'E‘,(x)dx.- p:Q_ﬁg': ff""Eo(x)dx=
[ o
= I_g &) — ,,zg_p, L. (4.118)

Taking (4.118) into account, we obtain the following operational equation:
(% = o - L2 ¢
=S¢ -y — izt (P) .119
yET] ~o(P)+p_pEo(ﬁ) Pz (P) (4.119)
whence
% T 1§
(=3 0—L@ ——=2D (4.120)
2 _ §2
e e

F ]

From the list of formulas of operational calculus we take the relation

et —Gshbr =g (1—5) e 3 (14 5) e (a12n)

As the required impulse characteristic has to satisfy the condition §(o0)= 0,
the function of which (4.120) is a transform cannot contain a term which would
increase exponentially with increasing argument. Therefore, in (4.121), a must
equal b, which corresponds in (4. 120) to

p%=l/ B+ 26 4. (4.122)

Relation (4.122) permits the elimination of the quantity E:,(I3) from the equa-
tion (4. 120) and thus to simplify it as follows:
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< Be !
= . 4.123
“P= R v «123
where
2
k=25 - (4. 124)

Let us recall that the quantity entering (4. 123) anc (4. 124) is equal to double
the average number of sign changes per time unit.

By transforming (4.123) back to the original, we obtain

__br  pviiRe__[ R ‘/——~,_me.
i"(')_y/m' _[l—f-k]p Itke ’ (4.125)

Thus, the requiredimpulse characteristic of the optimal system has been found.
Knowing it, the structure and the parameters of the system can be determined. Neg-
lecting the factor in the square brackets of (4.125) and comparing (4.125) with (3.126),
we can conclude that the RC circuit with the parameter a equal to

a==pY Tk (4.126)

has the impulse characteristic (4.125).

Figure 17. First circuit of an optimal filter
for an irregular telegraph signal
and uncorrelated fluctuatioa noise

The presence of the above-mentioned factor means that a voltage divider must
be introduced into the circuit. In this way the circuit of F:gure 17 is obtained. Its
parameters are to be chosen in accordance with the condit:ons

R, _ _* (4.127)
Ri+R, —1+#%°

—‘1,—(,:,—14—-,:—'):51/!-{»12. (4.128)

Assuming arbitrarily one of the parameters, the two others can easily be
found from (4.127) and (4.128). Of course, the shown stru:ture of the optimal system
is not the only one possible. In particular, the same resut is obtained with the cir-
cuit of Figure 18.

u; 1l Uowfls

i

Figure 18. Second circuit of an optimal filter
for an irregular telegraoh signal
and uncorrelated fluctuztion noise

78



The task of the above-considered optimal system was to reproduce, in the
presence of interference, the input signal with minimum mean square error. In the
theory of automatic control a more general problem is also considered, where a
system operating under the same conditions has to perform with minimum of error a
certain transformation of a signal; the line of reasoning in this case is analogous
to the foregoing.

§ 25. Elements of the Theoryof Potential Noise-Stability

The concept of optimal system, as introduced in the preceding section, is
in no way universal. In the following a different formulation of the problem is con-
sidered, in which the concept of optimal system acquires a completely different sense.
This theory, which will be sketched in the following,was developed by V. A. Kotel'nikov
124/.

Let us consider a communication channel under the action of random inter-
ference. The method of technically realizing the channel is of no importance for the
following. We shall assume that for the transmission of the information through the
channel two kinds of signals of equal duration T, denoted by A(t) and B(t) are used.
An example of such a transmission of information is telegraphy using the Baudot
code, where one of the signals is switching the current on, and the other is
the interval or switching on a current of opposite sign. The mode of transmis-
sion is assumed to be known, i.e., thedeterminate functions A(t) and B(t) are given,

The input of the apparatus which is placed at the output of the channel —it will
be called in the following receiver—is acted upon by X(t), being at any moment the
sum of one of the two indicated signals and of the interference W(t), which is a
random function of time. Thus, it is either

X)=AW+W, @0, (4.129)
or

X(O)=B(@+ W,(, (4.130)

where W,(t) and Wz(t) are distinct realizations of the random function W(t).

When receiving the signal X(t), the receiver mustrespondto one of the two signals
A(t) and B(t) which constitute its input. The basis for the response is the com-
parison between the disturbed signal X(t) and the signals A(t) and B(t), which
are in some way applied to the receiver. The reaction of the receiver is determined
by the closeness of X(t) to one of the signals A(t) and B(t). The concept of closeness
here used is conditioned by internal characteristice of the receiver,

As the various realizations of the disturbance may vary greatly in form,
it may happen that the input X(t), containing the signal A(t), is closer to the signal
B(t). In such a case the response of the receiver will be false. The receiver may
also respond to an X(t) containing B(t) as if it were the signal A(t). Such errors
cannot be eliminated in principle, i.e., a certain percentage of response errors
is unavoidable. The probability of error depends on the internal structure of the re-
ceiver, i. e, on the concept of closeness of two functions it employs.

Following V. A. Kotel'nikov we shall call a receiver ideal, for which the proba-
bility of error is minimum. This constitutes the optimal system, whose properties
are studied by the theory of potential noise-stability.

First we have to clarify the concept of closeness which is needed for the re-

ceiver to be idealin the above-mentioned sense. © We shall assume that the inter-
ference is a stationary random function of time, with normal distribution

79



.
w(W)= e =, (4.131)

Y 2xa

After receiving the signal X(t) we can say that in he givencase the interference
had appeared in one of the two possible realizations, eitker

W, (H=X({)—A() (4.132)

or

W, ()= X{t)— B(1). (4.133)

If the realization Wl(t) is more probable, then it ix also more probable that

the input X(t) consists of the signal A(t) and the interference. In the opposite case it
i8 more likely that X(t) contains B(t). Therefore, it becomes necessary to consider
the probabilities of the different realizations of the interference.

Let us assume, for simplicity, that the interference is an uncorrelated ran-
dom function of time. Then, by virtue of the statisticai independence of itsordi-

nates Yo Yogreeenen s g the n-dimensional probability deasity of these ordinates will be
n
I i 2
(Y Yaoooes Vo) =y ”exp[—:;—,zyi]. (4.134)
(V2raq) ’ et

where n can be arbitrarily large. This probability dens ty is the larger, the smaller
the sum of the squares of the ordinates, or, in other woids, the smaller the mean
square of the interference the more probable itbecomes. T1erefore if the inequality

T T
1 1
+ ) x— A)=dt<—rf(x—-8)= 1, (4.135)
1 v
holds, it is more probable that the signal A(t) is the one transmitted. If
T T

+f(X—A)2dt > irf(x—B)w, (4.136)

L) v
then it is more probable that the input X(t) corresponds to the signal B(t). By defi-
nition the probability of error in an ideal receiver must »e minimal. Therefore, the
closeness of two functions must be estimated in the iceal receiver by the mean
square of their difference,

Let us consider the condition under which the ideal receiver gives a false
response, Let A(t) be the signal at the input of the cimmunication channel, i.e.,

X{Oy=A)+W(). (4.137)

The response of the receiver to the signal (4.137) depends on which of the two
inequalities (4.135) and (4.136) holds. This depends ontl e form of the realization of
the interference in the given case, Suppose that form of the interference is such that
the inequality (4.136) holds. Thenthe response oftherecziver is false. We obtain the
condition for this error by substituting into  (4.136) the tr:ie value of the function X(t),
given by (4.137). Thus, the condition for the error o the ideal receiver is

T T
LTf\v=(t)m>L,f[A(e)-;-W(t)——u(e)]*dt. (4.138)

After some simple transformations we obtain this condition in its final form:
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T T
fw/u) 1B()—A@)dt > %f[A(t)-—B(!)]’dl. (4.189)
v [

The probability of error of an ideal receiver is equal to the probability of fulfill-
ment of inequality (4.139),

If the method of transmission, i.e,, the functions A(t) and B(t) are given, then
the right-hand part of (4.139) is some constant function, The left-hand part of (4.139)
represents an integral transformation of the probability function W(t). From the as-
sumptions made concerning W(t) we obtain that the left-hand part is a normal ran-
dom variable whose mean square, according to (3, 132), is

T
@=5 [1a0—Bora. (4.140)
0
Therefore, the probability of error of an ideal receiver becomes
(- l -:
P.,.= f ¥dz, .
e V2_* . [ (4.141)
M
where
T
M= %f [A()— B ()2 dL. (4.142)
0

We shall introduce into (4.141) a new variable of integration

2
x=Z, (4.143)
Then we obtain:
1 e

—_ 17 dx=W (N . .

R —_— o
where
T

Nz;l/ (140 —8@par (4.145)

2vst '

The value of the function §' (N) is easily found from tables of the Gaussian
error integral @ (x). Some values of Y'(N) are given in Table 3: Table 3

N 0 0.5 1 | 2 3 5

w(N) | 05000 | 03085 | 0.1587 lo.om 0.00135 | 3. 10-*

The calculation of the probability of erroris very simple. Knowing the method of
transmission (the functions A(t) and B(t))and the intensity of the interference (the quai -
tity 5)), integral (4.145) can be calculated, and the probability of error of the
ideal receiver can then be read off Table 3,

The probability of error of an ideal receiver is a characteristic of the employed
method of transmission. It shows how far, for a given transmission method, the ideal
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receiver can withstand interference, or, in other words, it characterizes

the potential noise-stability of this method of transmission. In a real receiver this
stability is lower than the potential one, The difference innoise-stability of anideal
and a real receiver is a measure of the perfection of the latter,

Let us apply the obtained results to telegraphy, emp:.oying pulses of both signa
of amplitude U and duration T. The quantity N in this case is equal to

N=UV 3 (4.146)

To increase the noise-stability larger values of N should be sought. By for-
mula (4.146), this can be obtained in our case by increasing the amplitude U and the
duration T and by decreasing the interference intensity 5. It should be noted that
for S— 00 we have N—0, i.e., Porr—0.5. Thus, atextremely strong interference
the receiver responds correctly and falsely with equal prooability. This means
that one could as well dispense with calculations of the received signal X(t) and de-
cide on which signal of the two has been transmitted by toesing a coin.
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Chapter Five

RANDOM FORCE ON A NONLINEAR SYSTEM

§ 26. Simplest Problem of Random Force on an Inertialess Nonlinear System

The simplest problem of a random force on a nonlinear system, which is
the subject of the present section, can be formulated as follows, Let a ran-
dom function x = x(t), describing the external force on the system, be given.
As was shown in the second chapter, this means that for any n, an n-dimensional
probability density w(xl, xz, vy xn) is known, where the X, Xgs ooy x ~are the va-
lues of the random function at the times tl’ tz, PN tn'

Furthermore, the determinate function ¥y =f(x)is known, which characterizes the
nonlinear system under random force. The variable y is the response of the
system to the external force at some instant t; it is determined only by the magni-
tude of this force at the same instant and is independent of the previous course of
the process. This property of the system is characterized by the term" inertialess' .

The problem consists in finding under given conditions the n-dimensional pro-
bability density w(yl‘ Yoo ,yn) for the values METRSYRRES of the responses of the

system at the times tl, t2,..., tn.

Let us find the probability for the simultaneous fulfillment of the following in-
equalities:
. L] '
yl—?d)ﬂ <y1 <.y1+§dy|'
L » l
yz_fdyz S)',<,V,+7dyr
.................. (5.1)
| . 1
yn - '§'dyn<}'u\<)’,, + _idyll

* % *
This probability is equal to w(yl, Foseen ,yn) dyl, dy2 Cen dyn. Therefore, if
the joint probability of fulfillment of the Inequalities (5.1) is known, we ob-

* ok *
tain immediately the required probability denasity w(yl, yz, . .,yn).
Let us characterize the set of n numbers X, Xg .. o X by a point of n-
dimensional space with the coordinates Xy Xgy ol ,xn. We shall call it the repre-
senting point. Then it can be said thatthe responsesyl, Yor -t Y, are functions

of the position of the representing point in the n-dimensional space.

All inequalities (5.1) are satisfied if the representing point is contained in a
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certain region D of the n-dimensional space. The probabi. ity for the fulfillment of
these inequalities is equal to the probability for the representing point to be in the
reglon D. Therefore the required probability can be writt:n as

WO Yy e YAV, dy, dy, =

”
:J'T.‘,fw(xl, Xar o oor X)dx dxy ... dx,, (5.2)
D

with the integral taken over the region D.

The right-hand side of (5.2) canbe calculated without knowing the boundary of
the region D by the following device. We introduce under the integral the factor
A (xl, Xy . xn) which is equal to unity if the representing point is in the region D,

and equal to zero if it lies outside this region. Then integra-ion over the region D can
be replaced by integration over the entire n-dimensional space and equation (5. 2)
can be written as follows:

WY W oo YAy Y, Y=
n .
= f”‘f AN Xge oo Xp) WK Xy o XY dx,. dx,. (5.3)
-0

The factor A can be explicitly expresged by means of the Dirichlet integral

+00
a=‘_f M e dz, (5.4)
L 2
an

which is equal to unity if2 <7< a,and equal to zero if Yis outside this interval.
We shall set in (5.4)

i
a= 74)'1 (5.5)
and . .
1=y, — =)= (5.6)
Then we obtain from (5.4)
w0 1
g 7‘ sin (5"""‘) . “1d
R z, expl_’zl {/(Xl)_ yl” Zy (5.7
Since
sin (—;‘ d)h N 2|)=";'dy| 2 (5.8)
equation (5.7) takes the form
d *
3, = —2{—‘ f exp[jzlf(xl)]exp[—-jzl,:)‘]dz,. (5.9)

In view of (5.5) and (5.6) we conclude tiat the value of d, is equal to unity if

¥y is within the limits defined by the first of the inegualities (5.1) and vanishes
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if ¥, is outside these limits. Analogously, it is not difficult to obtain expres-
sions similar to (5.9) forthe responsesyz, Vg seen¥, - The value of the factor A

becomes B(xy, xp o0, x) =33, ... 3, =

dy,dy, ... dy. [ "
=l [ e jtasce) + 2f e + .
st (e cxp[—-j(_v:zl + v, 4+ y:‘z“)]dzl dry, ... dz . (5.10)

Substituting this result in (5.3) and omitting the no longer necessary asterisks

from the responses y*, y=°2<, ey y:;, we obtain:
+o0
1 ~—
W (Yo Yoo - e y,.)=W.f....fA(z., 25 oo 20X
Xexpl—jnzi+y2a+ . - + a2l d2ydz, ... d2,, (5.11)
where
+00

AGw 2o 2= [T fepli 20+ 2f () +

cor F 2 ()] w(xy, Xy ..., X)dxdxy L. dx,. (5.12)
From equation (5.11) follows that the function A(zl, Zos os .,zn) is the char-
acteristic function of the n-dimensional probability density w(yl, or »oe ,yn)-.
+
——
A(Zp zzv LRER} zu)=f-~'~ f‘"’()’n- Yar oo e yn)x
-0
Xexplj(zih + zeys+ ... + 2ayaldy dy, . .. dy,. (5.13)

The obtained relations (5.11) and (5.12) determine the n-dimensional probabil-
ity density w(yl, Yor one ,yn) for the general case, and they represent the required

solution of the problem. From these relations the particular but important solutions
for n = 1 and n = 2 result automatically. For n = 1 we have:

400
w(y)=%‘f A(2)exp|— jyz]dz, (5.14)
vhere
+00
A(2) = f exp [j2f (x)] w (x) dx. (5.15)

For n = 2 we have

4+
win =g [ [ 4G ewl— i+ yaddndn, 6516

where roo
A, 2= [ [expljlaif )+ 2/ )l w(x,, x)dx, dsy. (5.17)
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The direct application of the general expressions (5 11) and (5.12) or of their
particular cases (5.14) and (5.15) for n = 1 and (5.16) and {5.17) for n = 2, leads
sometimes to cumbersome calculations, If to the functior f(x) corresponds a single-
valued inverse function x = ¢{y) of a sufficiently simple structure, then the following
device is more expedient. We replace in (5.12) the integration variables Xy Xgr o X

by the new integration variables Yqyr Yoo ovs¥pe Then we have:

e

Ay 2z o2 [ T [ewli@n+ 2yt o 29X

Xwle(y) ¢ oo YN I (¥) ...
e (Y dydy, ... dy,. (5.18)

Combining the equations (5.13) and (5.18) we obtiin the following simple
result:

W(Y Yo - o0 Pa)=
=w lp(y). 90 -+ UIIE P F (). ). (5.19)
where w. {9(»,). (V). ..., 5(va)) 18 the n-dimensional probability density for the

random variables X,, X,, ..., X, under the substitution xqu;(yl), Xy= (p(yz), ceey

x =g{y ). For the particular cases (5.15) and (5.17) we obtain, analogously,

n
forn-=1
wiy=w, e ¢ (¥ (5.20)
and for n = 2
Wiy, y)=w2:19(0) ele (M) e () (5.21)

It should be noted that when the domain of existence of 3 does not extend from
—oo to +o0o but is smaller, the integration of (5.13) and (5. 18) has to be carriedout
over this domain, but the validity of the equations (5.:9), (5.20) and (5.21) is
not affected.

In many cases the exhaustive characterization of tha statistical properties of
the response y, as given by the n-dimensional probability density w(yl, Yor - ,yn)

{s superfluous, and it is sufficient to calculate the first fcw moments of the response.
To find these moments we proceed as follows. In the expression (5.15) for the one-
dimensional characteristic function, we expand the exponential factor of the inte-
grand in a power series:

explizfiol =1 420y UYL (5.22)

Then the function A(z) can be written as the following power series:

A= E %(jz)“. (5.23)
where =0
m,= f (f() w(x)dx. (5.24)
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Relation (5.23) is the well-known expression of the characteristic function in
terms of an infinite set of moments. Therefore, relation (5.24) permits to cal-
culate one-dimensional moments of any order forthe responsey. Analogously, by
setting in (5.17)

explilzf(x)+ 2f(x)) )=
T Un s N UnS )
— z {Jjz fp!Xl)) 2{]‘1 ‘!—"1) —

p=0 va0
(L {20y o \
=E—"“——P—,ﬂ—‘(121) (2 (6.25)
"o v
we reduce (5.17) to the following form;
A z)= 3, B2 G2y Uap (5.26)
[

where the moments of the two-dimensional distribution of the response y are
given by:

M= [ [/ () wix,. x)ds dx, (5.27)

Let us note the important particular case of expression (5.27) corresponding
to u= v=1;

e
ma:f}'/(,,)/(;,)w(x,. x)dx,dx, (5.28)

Similarly it is not difficult to obtain from the expression (5.12) the general re-
sult for a moment of any order of the n-dimensional distribution of the response,

In conclusion let us note a special feature which is typical of nonlinear trans-
formations of random functions. Whereas, in a linear system, any moment of
response is determined by the corresponding moment of the input of the same order,
in a nonlinear system for the calculation of a moment of response it is necessary to
know the corresponding probability density of the input, i.e., the infinite number
of the corresponding moments.

§ 27. The General Problem of Random Force on an Inertialess Nonlinear System

The method of analysis which was presented in the foregoing section, can
be also applied to the following much more general problem, Let k random inputs
be applied at k points of an inertialess nonlinear system. We have to find the statis-
tical properties of the m responses of the system at its various points, responses
yj being related to the external forces by the equalities

)’|=/| (Xl, Xgs onco Xy),
Yo=/fax X3 ..o X)),

@ 4 e e e s e e e & .

(5.29)
Vo= fn(E Ko oeos Tp).
Each of the inputs 3 is characterized by an n-dimenslional probability den-

sity. Since in the general case all the inputs are statistically interdependent, their
joint k-n - dimensional probability density must be given,
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For each response of the system an n-dimensional probability density must
be determined. In view of the statistical dependence between the responses, an

m-n-dimensional joint probability density must be found for them.

The solution of the above problem does not present iny fundamental difficul-
ties. But, in order to avoid cumbersome calculations, we¢ shall solve it below for the

particular case of k = m =n = 2. The generalization of -he results for any k, m
and n is obvious.

With the above limitations, the system of equations (5.28) reduces to

n=h(x, x)
yr=/L1(x, %2 (5.30)
For the external forces the four-dimensional probezbility density
w(xll, X g0 ¥p10 x22) is given, where the first index gives the ordinal number of
the input, and the second shows to which of the time instants, 1;1 or tz, the in-

put corresponds, It is required to find the four-dimensional probability density
w(yu, Vg0 Yoro y22), where the indexes have the same meaning as above,

Following the method of the preceding section, let us find the probability
for the simultaneous fulfillment of the following four inequalities.

o l * ]
yn_?dyn <yn<yu+_2_dyn‘

o 1 . 1
ylz"?dylz<)’n<yu+7d)'u-

. .o (5.31)
Y~ ?dyu Lya<yu+ ?dyn

- l » l
yn—"fdyn< yzz<yzz+7fd)’n

* * * *
which equals w(yu. Y19’ y21, y22)dy11dy12dy21dy22'

The values xn, X0 Xgqs and Xoq of the external forces will be considered

as coordinates of the representing point in four-dimensional space. By analogywith
(5.2) we have for the [our-dimensional probability density of responses:

”(J’:v Vi Yo V) 49,0249, Ay =
=ffff‘w(x||' KXoy Xzp Xn)dx“ dx,,dx,,dxu (5.32)
D

In order to extend the integration of (5.32) overthe 2ntire space we introduce
into the integrand the factor

A=3,-8-8, -3, (5.33)

In order to obtain the co-factor 61 we set in the Dirichlet integral (5.4):

1 5.34)
a=3z dy, (
and

1=y,.—y},=f(x,.- xzx)—y:r (5.35)
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Then we obtain

+ 00

81’—_%“! f exp[iz, [y (% xy)]exp[ - jz.y) 42, (5.36)

-

The co-factors ﬁz, 83 and 64 have analogous forms, Therefore, the expres-

sion (5.33) becomes
A (X5, X2 X350 X)) =

dy“dy‘l.b:‘y-' dy”ffff"-xPUlZlfl(xu- xy) +

“+ nfi(xp x22)+zsfz(xn- X2+ 2, f2 (%12, x2)}] X
X e"P[—j(J’;xzx +y:zzz+y;lzs+y;zz‘)] dz dz,dz, dz,. (5.37)

Introducing the factor A into the integrand function (5.32) and omitting the
asterisks from the responses y, we obtain:

WY1 Vizr Yoo Ym) =

=lTlniffj7/A(Zl.Zg. 2y, z)expl—j(ynz, +

+ Y2+ YuZs + ynz)ldzydzdz; dz,, (5.38)
where
A2y 2, 25, 2))=

=ffffexPU{21/‘(xll' X21) 4 22/, (%45, X30)
T+ 23/2 (%0 X))+ 25 (Xyp X)}] X

X W (X1 iz K10 Xpg) A%y AX 13 dXyy d Xy, (5.39)

Here the function A(zl, Zgr Zg z4) is the characteristic function of the four-~

dimensional probability density Wiy, ):

Y120 Ya1r Y32
+x
A2y, 23, 2y, Z.)"—‘-ffff‘w(}'u-)’lz- Yo y)-explj(z v, +

+ Z2Yi2+ 2aya + 290 dy AV dyy dyy,. (5.40)

If to the system of functions (5.30) corresponds a sufficiently simple system
of inverse functions

X =9, (¥, ya). } (5.41)

X2 =9 (Y1, Y2h

then the probability density w(y. ., y.., » Y.,) can be found more sim in the
Y110 Y122 Ya10 Y2 y

following way. Let us replace in equation (5.39) the integration variables
X Xpg0 X0 and X9 by new variables Y110 Y120 Yo and Yog- Then, in accord-

ance with the rule for changing integration variables in multiple integrals, we obtain:

+o
A2y 2 25, 2)= ffffe"PU(zn_Vu+zzyu+3a)’ax+3¢yzx)lx

X290 Y @1 Ya) 22000 Ya) 92 (Fa Y2)l X
X | DDy | dy, dy,y dyyy dys, (5.42)
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where D1 and D2 are the functional determinants

O (Y510 Y1) 99y (Yyr Y1)
ayy Oya

I3 (Y Y1) 99a N1y Yn)
oyu dyn

99 (Y1 Yn) %1 (19 Y22
2T 04 ]

3 (Vi Yn) a1y Y0
Oy 9yn
Combining the expressions (5.40) and (5.42) we obtain the final result:
w (Vi Y1z Yro Yd = 0210 (1 Yo 71 01 Yoo,
%2 e Yu)r 92 Wiz Y1 DID; (5.45)

D,=

(5.43)

D,= (5.44)

where w is the four-dimensional probability density o' the inputs, with the
variables changed a8 indicated in (5.45).

The transition from (5.39) to (5.42) and, consequently. the expression (5.45)
are correct if the following conditions are complied with: 1) the functions 4y and

‘92 and their partial derivatives are continuous in the domain of integration; 2) the

product of the determinants D1D2 does not change sign in this domain; 3) there is

a one-to-one correspondence between responses andexternalforces, The lastcondition
limits the range of application of formula (5.45) and of its possible generalizations

to cases in which the number of the inputs of the system is equal to the number of

its outputs (k = m). Formulas obtained by generalizatior of (5.38) and (5.39) are
free from this limitation.

To obtain the relations for the moments of the r:sponse we write the
exponential factor of the integrand of (5.39) as a power series:

exp 1/ (201 5y X))+ 22/1 (X120 X22) +
+ z:f2 (%440 X9)+ ‘J?(xxao x|l =
_ 2 f1 (x1g X1 Lfy (K19 Xo)]™ (S (Xnae Xq0)] 2 [ (0, Xn)l")( (5.46)

vilvgluglyyl
" . . . .
Then {5.39) becomes: X(jzl) (]zz) (jzi) (jzd) .
A2y, 2y 25, 2)=

= Y D )"z 0z)" (5.47)

Vg You ¥y Y,
where the four-dimensional moments ofthe responsesy, ind y, are defined by

Myt vtnts, =

=If?f|/| [CNE | A€ ) b ATE N x)1* X

X s (%19 X))@ (X, X120 X310 X} A%y dXyy d Xy dXpy. (5.48)

For the mixed moment of the fourth order we have from (5. 48), for
NW=H=yy=v,=1:

400
m={ f ! [ i 2 fiin 20 file 202 (i 20) X

X w(xy, X0 Xy Xpg) dXy dX13d 2%y dxyy. (5.49)
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Our problem has thus been solved completely in principle. It should
be borne in mind, however, that the application of the obtained general relationships
to specific cases meets sometimes with considerable computational difficulties.

§28. Random Processes in Inertial Nonlinear Systems

The results of the two preceding sections lead to the conclusion that the
solution of the problem of random processes in inertialess, nonlinear systems
does not present, in principle, any difficulties. But the calculation of the
moments of the responseis much more complicated in such a system than in an in-
ertial linear one, as much more subtle features of the input have to be taken
into account.

The difficulties increase sharply if the nonlinear system possesses inertia,
The reason for this can be readily grasped by taking into account that the behavior
of such a system is described by a stochastic differential equation, or by a system
of such equations, and considering further that at present there are no general
methods of solution of nonlinear differential equations, whether for random func-
tions or for determinate functions. Owing to this, the theory of random pro-
cesses in inertial nonlinear systems is at present still in its initial stages,

The most general problem concerning a random process in an inertial nonlin-
ear system with one input and one output {for definiteness we shall consider below
only such systems) is the following. For any n, the n-dimensional probability den-
sities of applied input are given: it is required to find the corresponding multi-dimen-
sional probability densities for the responses of the system.

Such a problem is already difficult for an inertial linear system (with the ex-
ception of trivial cases, when the input is normally distributed, or whenthereisno
statistical dependence between values arbitrarily near in time). Far from being
complete, the results hitherto obtained are of only preliminary character (see for
instance, /25/). For inertial nonlinear systems even such results are lacking.

The problem of random processes in nonlinear inertial systems is substan-
tially simplified if the external force is uncorrelated. In such a case the Fokker-
Planck equation can be used for its solution.

The Fokker-Planck equation was obtained while developing the theory of the
Brownian movement. A rigorous derivation of this equation is given in the work of
A.N. Kolmogorov /26/, a simplified derivation is contained in the book of
M.A. Leontovich /27/, in which it is called the Einstein-Fokker equation. The
method of applying the Fokker-Planck equation to the analysis of random processes
in nonlinear systems is shown in the work of L. Pontryagin, A. Andronov and
A, Vitt /28/.

By using the Fokker-Planck equation a number of investigators obtained im-
portant results concerning random excitation of tube oscillators. The first results in
this direction were obtained by I.L. Berstein /29, 30/. Along with the works of
Berstein, the works of G.S. Gorelik /31/ and S.M. Rytov /32/ on the same sub-
ject should be mentioned, as well as the article by P,I. Kuznetsov, R. L.. Stratonovich
and V.I. Tikhonov /33/. The same problem was solved in a different way by
1.S. Gonorovski /34/.

Without belittling the great importance of the results obtained by the above
authors, it should nevertheless be borne in mind that the case of a nonlinear system
under uncorrelated action is far from exhausting all the important physical and
technical problems relating to random force on nonlinear systems. Thus, a
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further search for methods of analysis of random process+s in nonlinear inertial
systems is necessary.

The simplicity of the laws for the transformation of moments suggests that
the search for laws of response distribution be abandoned and that we should
be content with the calculation of its moments which, in many practical cases, give a
sufficiently complete idea of the random process. But this simplified formulation
of the problem, which leads to simple solutions in linear problems, turns out to be
rather cumbersome for nonlinear systems, This is due to the fact that, in contrast
to linear systems, where any moment of the response is determined by a moment
of input of the same order, in nonlinear systems any moment of the response
is determined by an infinite number of moments of the Inpu:, as was noted at the
end of §26 with respect to inertialess systems. Therefore the expression for any
moment must have the form of an infinite function series. Similar results were
obtained by V.S. Pugachev /8/, as well as by P.I. Kuznetsov, R.L. Stratonovich
and V.I. Tikhonov /35/.

While the methods of solution of the problem of calculating the moments of
the responseof the system as given by the above-mentioned investigators give, in
principle, accurate solutions,they are very cumbersome, which greatly reduces
the possibility of their practical application.

It follows from the above, that, when solving such probl:ms one often has toaban-
don the use of some general methods of analysis, and one has to solve each
problem approximately, by applying special methods, adapted to the peculiar fea-
tures of the problem, As examples of such an approach to this question we mention
the works by L.S. Gutkin /36/ and V.1. Tikhonov /37, 38/.

In conclusion, a particular class of inertial nonlincar systems should be
mentioned, the analysis of the random processes occurr:ng in which made by
comparatively simple means. These are systems consisting of two mutually
independent units in cascade connection, the first of which being inertialess and
nonlinear, and the second inertial and linear. We call a ccnnection "'cascade' if
the output of the first unit is connected to the input of the sccond.

In such a system the random function, equivalent t> the input, is subjected
first to an inertialess nonlinear transformation, and then to a linear inertial
one. Knowing the distribution law of the input to the first, and using the relation-
ships of the present chapter, the moments of the response on theoutput of the first,
i.e., input of the second unit can be found, and then, by th¢ methods of the third
chapter, the moments of the response at the output of the 8:cond unit can be calcu-
lated.
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Chapter Six

SOME NONLINEAR PROBLEMS IN THE THEORY OF RANDOM PROCESSES

§29. Action of Fluctuation Noise on a Detector with Exponential Characteristic.

In many cases the actual volt-ampere characteristic of a tube diode is well
approximated by the exponential function

1= Jye®%, (6.1)
where i is the anode current of the diode, u the voltage on its anode, JO the anode

current at u = 0 and a is some constant parameter.
Suppose that a diode with the volt- ampere characteristic (6.1} ig under the

action of a fluctuation noise u (Figure 19). It is supposed that the noise voltage is
stationary and has normal distribution with the mean square 03 , Ll.e,

1 22
— . 6.2
w (u) fz_"ue hd (6.2)
¢
u

Figure 19, Diode under fluctuating voltage

We assume the normalized autocorrelation function of this voltage to be of
the form

k() = ¢~ " oS wgt. (6.3)

Expression (6.3) corresponds to formula (4.31) for the second moment of the
fluctuation voltage in an oscillation circuit, connected to a source of correlated
random electromotive force. It is required to examine the statistical proper-
ties of the current in the circuit of the detector.

As the process is stationary, the d.c. component of the current in the circuit

of the detectoris the first moment of the current and is independent of time. Set-
ting in (5.20) v = 1 and taking into consideration (6.1) and (6.2) we have
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'
o

400
! - —
.’_=M,=:£ JO'“VE—R:‘ du=

+00
Jn f u?
== exp| —— -+ au|du. (6.4)
Vi ) 0[]
From the table of definite integrals /6/ we take the :ollowing formula,
+ i =
f e-PF4qr dx — o4p '/ ;. (6.5)

Then, after some simple transformations, we obtain from (6.4)
1 2
= a%
Jo=JpT T'n, (6.6)
The increase in the d.c. component of the current urder the action of the
noise voltage is equal to
L}
w gty
AJ=J,—J(,=.I°[¢=° --—l]. (8.7)

Let us find the second moment of the current. For that purpose we shall
write down the expression for the two-dimensional probability density of the noise
voltage:

(6.8)

2::: Vi —k: EXP[ 20:(] - t:)

where k= ku(t) is the normalized autocorrelation functicn of the voltage acting on
the detector. Now, in view of the formula (5. 24), we can write

m‘,‘)(t) = fmf'lo’a.dlfn." 2‘":‘/‘—_-‘?" X .

-0

X exp [—

4 3
= 21:3: VT-——k: _fm CXP[— 2a:(l —kz) +ﬂlg] au; X

+
T e D
exp| — @ . u, |du,. (6.9
7. 23 (1 — &%) a(—#) 7/
The calculation of the inner and the outer integrals in this expression is easily
done by applying (6.5), and gives the following simple resul-:

m () = £ expa'sl (1 + k)] = L%, (6.10)

At t = 0 we have k“ =1, and we obtain for the mean sjuare of the current

the expression

cf:!’e" ‘s, (6.11)

The mean square of the noise component of the currert in the circuit of the
detector is determined as follows:

3
fomrd— A=A ().
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Let us examine the expression (6.10) for the second moment of the current.
Replacing the exponential factor of this expression by a power series and taking in-
to consideration (6.3) we obtain

md =2 zh m~ﬂ.
n=0 (6.13)

By expressing the factor cos" w,3 in each term of the series (6.13) as a sum
of a constant number (for even n) and cosines of multiples of the angle, we find
that the moment "":”(.') contains an aperiodic component, which decreases with in-
creasing t, and damped oscillation components of frequencies wy, 2w, 3u,, . ..

From the point of view of the detection process, the aperiodic component, related
to the terms of the series corresponding to even values of n, is of fundamental
interest,

Let us isolate this component. As well known, the constant term for

coszmx is equal to (2m)!/22m(m!)2. Therefore, the above-mentioned component
is obtained from (6.13) in the following form:

! -s':

(a%
m‘l‘lper (1) = j’ z 23.‘ (m”g . (6.14)

Taking into consideration the well~-known relation from the theory of cylindri-
cal functions

Io(2) = i(,:—,,;(%)m. (6.15)

m=l
where /,(z) is a modified Bessgel function of zero order, we can write (6.14) in a
more compact form:
. (Y=L .l (d%de™™) (6.16)
We shall find the spectral density of the current, which corresponds to the

aperiodic component of the moment in the following way. Applying the formula
(3.62) to individual terms of the series (6.14) we obtain

a%ie-vtym
2 ff —(-m!),—cosw de=
(6.17)
—2p @)"  ma
TR () AmZa? f w?
Therefore, the complete spectral density, as determined by the aperiodic
component of the moment,becomes

2 0 N (X" 2m
Fiaper W)=23J2 z.: ——-;:,w), R (6.18)
"M

It follows from this expression that the considered component of the spectrum
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of the current in the detector circuit has a maximum atw==0, and decreases mono-
tonically with increasingfrequency. It can be called low-frequency component. It
appears as a result of rectified noise voltage.

Analogously, we can single out from the series (6.13. damped oscillation com-
ponents of the spectral density with maxima in the ranges of wy, 2w, 3w, ...

respectively. We note that the specirum of the input voltege has its only maximum
in the frequency range w,.

The appearance of maxima of the spectral densits of the response for
harmonics of the frequency of the input spectrum maxinmum is characteristic
of random processes in nonlinear systems. The aperiodic component of the
response spectrum can be missing in certain cases; this occurs if the character-
istic of the nonlinear element is an odd function.

§30. Statistical Properties of the Noise Voltage Envelope
at the Output of a Selective System

It has been shown in § 21 that the noise voltage at the output of a selective
system, tuned to the frequency w,, is an oscillation of frequency wy, modulated at

random in frequency and phase. In some cases, and particularly in analyzing the
action of such a voltage on the amplitude detector of a radio receiver, it is impor-
tant to know the statistical properties of the random amplitude of this voltage. This
question was considered in the publications of V.I. Bunimcvich /4/ and S. Rice /38/.
We give in the following an account of the results stated in these works.

The instantaneous noise voltage on the output of a lincar system is expressed
by formula (3.26), in which, by limiting ourselves to the consideration of a station-
ary random process, we assume the lower integration limit to be equal to — 9o,
and the upper limit to be t1 = 0. This last assumption can always be made by choos-

ing a suitable time origin. Let us denote the integration variable by t'. Then
[\

tou (O = [ win ¢)E(—1)dl. (6.19)
-

By changing the integration variable:t=-t’, we obtair

tou 0= [ i L O L. (6.20)
0
Let us analyze a single oscillation circuit, conne:ted to a source of
noise electromotive force. More general results can be obtained analogously.
We shall consider them later on.

The impulse characteristic of a series oscillationcircuitcanbe expressed as
follows:

3
E(l)=:—‘:e"‘slnu,tzw‘,r"siumat (6.21)

with notations as in § 21. This result can be obtained in various ways. In particular,
if the transfer ratio operator of the circuit is obtained ‘rom (4.22) by the substi-
tution jw= p, and considering that the transform of the unit impulse function
isequalto unity, thenthe inverse transformation of the product of the above -mentioned
transforms leads to (6. 21).
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Substituting (6.21) in (6.20) we obtain:

>
Uou (0)= fum (1) woe=*! sin wyt dt. (6.22)
v
As had been shown already in § 21, the nolse voltage at the output of a selec-
tive system is the result of superposition of infinitely many damped elementary
oscillations, which are caused by elementary impulses of the input noise. A single
elementary oscillation

du o, = u;, (1) dt - we—* sin wet (6.23)

can be represented by a vector of length u, (f)df-wse-¢ and of phase wy

(Figure 20). Expression (6.22) gives the projection of the resultant vector, repre-
genting the total oscillation, on the abscissa. As it s the length of the vector which
is being considered, one has to write down the expression for its projection on the
ordinate. This is equal to

-]
Vou (0) = f din (£) wye=* cos w, £ dt. (6.24)
°
The projections Ut and Vout 7€ random variables. If the input noise is un-

correlated, as will be assumed in the following, these projections are distributed
normally. The normal law applies also to correlated external force having a nor-
mal distribution. The mean square of the projection u(')ut can be easily computed,

using equation (3.132). Assuming in itt==0, and noting that a <€ w,, we have:

- -]
2
¢:=Sf[moe“‘sin ot L2 g, (6.25)
[1]

L wf - _‘(Ul"
L hn
be d”oul

Figure 20. Vector of the elementary noise voltage at the
output of a selective system

The same result is valid for the mean square of the projection of YVout® Con-

sidering the equations (6,22) and (6.24) as a set of two integral transformations of
the random function, it is easy to calculate the mixed moment of the projections u
and v, For this we make use of equation (3.153), in which we put t2 = 0, denote

tl— t2 = tl =t and change the sign of the integration variable. Then this equa-

tion assumes the form:

m{ () = sf B (4 )& () dt. (6.26)
[ ]
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In the present case of t= 0 the impulse characterist c §,(f) i{s determined by
equation (6.21), and £ {(f) is

(1) = wye=* cos wyf. (6.27)
In view of the above, we have:
oD
my (0) = Sf {wge -2 sin wy ] [woe ~*t cOs wf) df =
0
o

=Lsetfe ~ls_ =
25006/‘3 "‘sln?uofdt-—iszﬂ. (6.28)

From (6.25) and (6.28) we obtain the correlationcoefficient between u and v:

m{ (0) wyfa
Puc(0)= : P By | +(i°/¢)i . (6.29)
Since a € wy we can assume
Pw(0)=0- (6.30)

in other words, the projections can be considered as statistically independent of
each other.

After this preliminary work we can proceed to the study of the distribution law
of the amplitude U of the fluctuation oscillation, which is connected with the projec-
tions u and v by the nonlinear relationship

U=VurFo. (6.31)

For the solution of this problem we shall use the relstions which were obtained
in § 27 foran inertialess system with several inputs and outputs. The present case
can be considered as having two inputs and one output, and it is required to find the
one-dimensional distribution of the response. Equations (5.38) and (5.39) reduce
to

4+
w(yn)=2—', f A(2)e~Mt dz, (6.82)

with

a0
A@@)= If exp (jz - f(xy, Xl @ (X, xy) dx,, dXxy. (6.33)

In our case we have x,, = u, =v, = U. The two-dimensional joint

11 *21 11
probability density for the projections u and v will be

| e
w(u, 'n)=w(n)w(v)=me - (6.34)

Substituting (6.31) and (6.34) in (6.33) we obtain,

JR e
AD =51 fe VI 4y . (6.35)



Here the integration is performed over the entire uv-plane. We note that

the integrand of (8.35) is constant for U ==V 4? 4- v? = const. This allows to replace
integration with respect to the coordinates u and v by radial integration, i.e., sum-
mation over annularbands of radius U and widthdU, centeredatthe origin. Because of
the conatancy of the integrand, the integral with respect to a single ring is equal to

o
2zl dUe # *VU, (6.36)

In view of (6.36) we can express the characteristic function A(z) as follows:
o U _E
A= f 3¢ =10 gy, (6.37)
0

Combining (6.37) with the definition of the characteristic function

A= [ wx) e~ ax (6.38)

and considering that the amplitude U can have only positive values, we conclude
that the amplitude probability density is equal to
ul
=Y., 6.39
w(l) = e . (6.39)

The same result is obtained by substituting the value (6.37) of the character-
i{stic function in (6.32) and integrating. But in the present case we succeeded to
carry out the calculation by a much simpler method.

The distribution law is expressed by (6. 39) is called Rayleigh's law: the

corresponding relation between the probability density w(U) and the amplitude is
shown in Figure 21.

wiu)

0 v

Figure 21. Probability density according to the
Rayleigh distribution law

Let the analyzed noise voltage act on an ideal amplitude detector. We call
an amplitude detector ideal if its transfer ratio is equal to unity and if it re-
produces on its output without distortion the envelope of the modulated oscillation,
acting on its input. The d.c. component of the voltage on the output of the detector,
which is equal to the mathematical expectation of the amplitude U, is expressed as
follows:

oo - v'
E==M[U|=wa(U)dU=;’,-f Ut au. (6.40)
0 4]
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In tables of definite integrals /6/ we find the following formula:

Sprtpta gp — (28— /Tw
5[: x dx ST 7 (6.41)

Using a particular case of this formula, with a = 1, we obtain:

"
E.=V 70 (6.42)

Let us find the mean square of the amplitude U, whica is at the same time the
mean square of the voltage at the output of the ideal detector. We have:

[t} oo m
o§,=o’z=fU"w(U)dU-—-u—l,-fU’e_‘?'dU. (6.43)
0 0

For the calculation of the integral (6.43) we shall use the following formula
from the tables /6/:

oD
1]
f e-prxaitge— (6.44)
2pa+i
s pe
In our case a = 1, and therefore
o{, =} = 202, (6.45)

The mean square of the noise component of the voltage output from the detector
i8 determined from the formula (6.42) and (6.45) as follows

o =o—F=1"Tq=—0430 (6.46)

Thus, all the more important characteristics of the random amplitude U,
which could be calculated from its one~-dimensional probability density have been
obtained. Of course, the first and second moment (6.40) ar d (6.45) could have been
found directly, without finding w (U).

Let us consider now the statistical dependence in the envelope of the noise
voltage., For this, we shall determine the two-dimensional probability density for
the amplitudes U and U,, separatedbythe time interval z. The relationbetweenthe am-
plitude U and its projections is shown in (6.31). Analogous.y, we have:

U=Vul o (6.47)

As was shown above, the projections u and v in {6.31) are statistically inde-
pendent. The same applies to the projections 4, and v,. Tae statisticaldependence

between u and u, is characterized by the moment (4.31), whence we obtain
Pun_(3) =€ *cosmyz. (6.48)

We have to investigate the statistical dependencesbet veen the following pairs
of projections: v andv,, wandv,,vrandu,. Applying (6.26) ard (6.27) we can write for
the projections vand v,

<©
m‘z"i'(:)= S f [wye=* U+ cos wy(t +-3)] [mye ~*t cosmpt | 2. (6.49)
u
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The calculation of the integral does not present any difficulties, Since & <€ w,,
the result can be taken as equal to

2

. 1o
mi* (1) = 5 — Se~= cos ugt, (6.50)
whence we obtaln, in view of (6.25) and (6.48):
(vo))
m * (0)
Pov, (¥) = ——3— == €77 C0S O4T = pyy, (). (6.51)

Analogously, we have for the projections u and v :

mP (=S f (02~ ¥ sin wg (¢ 4 1)) [wge ™" cos wyf) dt =
[

2 (6.52)
= -% -::— Se” Tsin wgt,
i.e.,
Pue, () = ¢ T sinwgyr, (6.53)
and for the projections v and uqg:
o
mi™) () =S [ fmge™" “+" cosaq(t + Dllwoe ™" sinaf] dt =
°
2 (6.54)
1 % -
=—q —a—‘le “* sin w1,
whence
Prug (D)= — € T sineyge. (6.55)

Henceforth it will be convenient to use the following notations for the expres-
stons (6.48), (6.51), (6.53) and (6.55):

Puw. = Peey = ¥ () €OS gt == § () cos B. (6.56)
pw‘_—_—pwt=qo(t)s(nmot='{l(t)sinp. (6.57)

where §(t) is the envelope of the normalized correlation function of the instantane-
ous noise values, which for a single oscillation circuit is equal to

y(r)=e"" (6.58)

Now we can write down the four-dimensional probability density of the pro-
jections. As well known, with a normal distribution law the n-dimensional proba-
bility density can be expressed as follows /40/:

W(Xyy KXo oo os Xp)= .
1 1 XX 4
= ————————eXp | — 55 D (6.59)
9,39+ 0y ¥ =D P [ 20 t.;-x v 8,94 ]'
where D is the determinant of n-th order:
Pu1P1z---Pim
D= PubPry---Pom | (6.60)

PriPng: - <P
Dij is the algebraic complement of the element Pij of this determinant, Pij being
the correlation coefficient. For i =] we have pij = 1. In the present case, putting
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xl = u, x2 =v, x3 =u, and X, = Vy We have:

1 0 dcosP ¢sind
0 1 —¢sinf ¢cosP
D= ¢cosp —ysinp 1 0 . (6.61)
$sinp ¢ cosP 0 1
The calculation of D and of its algebraic complements Dij gives the following
results:

D=(1—¢p, {6.62)
D\ =Dp=0Dy; =D, =1—4, (6.83)
Dy =Dy, =Dy, = s =0, (6.64)
Dn=D:|=Du=Daz='—1’(l—'{")C°5pv (6.65)
Du=Du=—‘D::=‘—D:z=—4‘(‘ —¢?) sinf. (6.66)

With these results the general expression (6.59) becomes:

w v u, "‘)=4ntml‘~vl’)“p["z¢a(ll—-?’) !"2"""2‘*"
-+ u: + vf— Z?lcosp(uu‘—}-w‘) +ﬂﬂp(ﬂ’,—0ﬂ‘)m- (6.67)

The characteristic function of the probability density of the amplitudes U and
U, can be expressed thus:

A 2= [ [ ] [ exolila Vs o /e

Xw(u, v, 4,, v,)dudvdu, dv,. (6.68)

by analogy with expression (5.35),

Let us introduce new integration variables, which are connected with those of
(8.68) by the relations

u=Usind, v=~Ucos0, u,=U,sinb, v,=U. cosf,. (6.69)

Then, using the rule for change of variables in multiple integrals, we give to
the characteristic function (6.68) the form

+ 00 UU'
A(zl' zl) = ffexp l/(zlu +21Ur)] 4*_0,‘“ — *;’)X
4]

Xexp| — grr—gs U+ UI)] U du, X
r 2n

Xf f CXP[, "{f’ﬂw cos (0—0,-——p)] d6 db.. (6.70)
v o0

The calculation of the inner integral is simple, in view of formula

F1d
f "0 g e — 2n/ (a). (6.71)

This formula is easily obtained by replacing the expone ntial function in the
Integrand by a power series, by integrating by parts and con paring the obtained re-
sult with the power series (6.15). Using expression (6.71), v-e obtain:

102



> 2

f f‘exp[.—,‘i('-f—/u—wcosw—o —B)]dﬁdﬁ =

' =4a=10[ =) (6.72)
which allows to write (6, 70) in the form
Az, 2) = jf 7' exp j(z2,U + 2,U)I :,.—UU—ILWX
clo [t ] exp | - %J U au,. (6.73)

Comparing (6.73) with the definition of the characteristic two-dimensional
distribution function

A(z,, 2) = f f explj(zU + U w U, U)aU dU., (6.74)

-0
we obtain the following final result:

__ uy, A v+ U}
@ U, U) =125 Io[a,(l_+,)]exp [—m,_) . (6.75)
If the time intervalr is very long(t — ¢o),then ¢(x) = 0 and with /,(0) = | we have
U’
L - =
wU, U)= _:f,_,"z,—-_ ‘:_Tre = (6.76)

i.e., (6.75) becomes a product of one-dimensional probability densities of the
kind (6.39). This was to be expected, as at T — cothe amplitudes U and U, become
statistically independent of each other.

The mixed moment of amplitudes U and U; can be found in the following way:

m‘,"’(z):f f UU.w U, U)dU aU,, (6.77)
0 v

where the probability density w(U, Ut) is expressed by formula (6.75). Thusa:

mr=[ [ ot x

v 4 Ut
Xexp [— ﬁ] du du,.

(6.78)

The calculation of the integral (6.78) leads to rather tedious computa-
tions. They are contained in the monograph by V.L. Bunimovich /4/ and will not be
repeated here. We give only the final result:

my” ()= 2ZE() — (1 — I KWL, (6.79)

where K(§) and E () are complete elliptic integrals of the first and second class,
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n/2

K§) = J a2

VT—¢7sintg *
nf2

EW = [ VT—¢sintg de. (6.81)
[

(6.80)

The mixed moment for the fluctuation component of the amplitude and, simul-
taneously, of the voltage at the output of the ideal detector hecomes, by virtue of
(6.42) and (6.79),

MO =m O — =t {REW—( —Pr@PI—3). 682

As complete elliptic integrals can be expanded into repidly converging series
in terms of even powers of ¥, we can expect that expression (6.82) can be approxi-
mated with sufficient accuracy by a polynomial with a small number of terms. In-
deed, the expression (6.82) can be very well replaced by the approximate formula

mi) () = 02 0.39¢2 (1) + 0.04¢4 (7). (6.83)
For tentative calculations the still rougher approximation
m{f," (1) = 0.430%2 (z). (6.84)
can be used.

Results of calculation by the exact formula (6.82) ard by the two approxima-
tions (6.83) and (6.84) show that the error introduced by the formula (6.83) does not
exceed 1%, and can reach 10% with the formula (6.84).

In conclusion, let us examine the spectrum of the envelope or of the voltage at
the output of an ideal detector. Using the approximate forn.ula (6.84) and assuming
that the envelope % (<) of the normalized correlation function for the instantaneous
noise values satisfies the relation (6.58), as it does in the case of a single oscilla-
tion circuit, we obtain from (3.62):

Fyw)= %J. 0.436% " cos wt d‘=0'55°’T-‘2:-T' (6.85)
o

For definiteness, the above analysis has been restrictad to noise voltage on a
single oscillation circuit. But it can be easily seen that thir assumption determines
only the form of the function ¥(x). The rest of the obtained results can be applied
to any selective system.

In the theory of radio reception, in addition to the abov :-considered problem,
it is also of interest to examine the statistical properties of the envelope when fluc-
tuation noise and signal of some shape are simultaneously a;iplied to the input of
the selective system. In such a case the analysis is accomp ished by the same
means, but the computation turns out to be congiderably more cumbersome.

§31. Statistical Properties of the Phase of a No se Voltage
at the Output of a Selective System

Phase fluctuations of a noise voltage at the output of a selective system are
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of interest in the case when this noise acts on some phase-sensitive device., The
following final results have been taken from V.I. Bunimovich /4/.

We understand by the random phase of the noise voltage the angle formed by
the vector U, which represents the random process, and the abscissa. This ran-
dom phase was already introduced in the foregoing section, (the angles 6 and 9,
in the expressions (6.69) and the following). From the first pair of the relations
(6.69) we find that the nonlinear transformation to be examined is, in the present
case, of the form

0 = arc tgs—. (6.86)

Starting from (6.33) and (6.34) we shall write down the characteristic function
for the probability density of the phase as follows:

w4

+o0
A(2)= ffexp[jz arc tg %] . 2103 e dudo. (6.87)

Replacing in (6.87) the integration variables u and v by the new variables U
and 0, we obtain

2x o

[a<]
Ax)= fe'l"dﬂ-—é%;er-VdU. (6.88)
I 0
Applying formula (6.44) taken from the tables, for a = 0 we can transform
the equation (6.88) to

2=

A(Z)=f ef“—‘;%—. (6.89)

[

Now, combining (6.89) with the definition (6.38) of the characteristic func-
tion of the one~-dimensional distribution, we obtain

(6.90)

w(l)= 2ln .

Thus, all values of the phase between zero and 27 are equally probable.

We turn now to the two-dimensional distribution of the phase. The correspond-
ing characteristic function can be written down, by analogy with the equation
(5.35), in the following form

+o0
A(z,, zﬂ:[fffexp{j{:.arctg%—}-zzarctg%:}]x

X w(u, v, u,, v)dudvdu duv, (6.91)

where the four-dimensional probability density w(u, v 4,.0) is determined by
formula (6.67). By changing in (6,91) the integration variables in accordance with
(6.69) we obtain

A(zy, 2)=

2x 2=

=6f!explj(z‘a-{-z,O,)ldOdO,_/;fTa"‘l:]l—‘_—_F—))(

Ut — 2 cos (8 — 8, — pYUU. + U?
X exp [— i §==u—¢=§) + ]dUdU,. (6.92)
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In the paper of 5. Rice /39/ the following definite integral was computed:

ff xy - exp[—(x*+2xycos 9+ y?) dx dy ==
']

=-:—cosectp(l — pctgg). (6.93)

If, in the inner integral of (6.92), the variables are caanged

uUs v
W@ =t o= = (689
and
pcos(d— 8, —B)=n=—coso, (6.95)

i8 introduced, then its computation amounts to the use of formula (6.93). In view
of this the expression (6.92) assumes by simple transformations the following form:

2z 2¢

A z)=[ [ explj(20+ 281 a0 a0, x
o v

11— ! = — arccos vy
X3 {1_,1: R Tt B (6.96)

Combining (6.96) with (6.74) we obtain the two-dimensi nal probability density
of the phase:

1 ®— arccos v
w@, 0)=—F"F} —— —_—

( f) { ]_,‘2+1‘ u_.,‘ﬁjlg }O (6.97)
where the quantity n is determined by equation (6.95). We recall that in the
considerations of the foregoing section, on which the calculations preceding
(6.97) were based, it was assumed that £, > 2. In other words, the phase § corres-

ponds to a time moment which follows the phase 0, after an interval t .

If it is assumed thatt — oo, than ¢(x) =0, n—s Qand the probability density (6.97)
at the limit assumes the value

w (0, 0‘)=-2';- % ~ (6.98)

Comparison of (6.98) with the one-dimensional probabil .fy densify (6.90) shows
that at t — 00 both phases become statistically independent o! each other, as was to
be expected.

Let us consider the statistical properties of the phase €. when the value
has been fixed at some time moment, which is being taken as the beginning of the
reading. For this, we must find for 8 the conditional probability:

w (9, 6,)
w() °

In view of expressions (6.90) and (6.97) for the two probability densities enter-
ing in (6.99) we obtain:

w0, ="t [ o4y

w(®,|0) = (6.99)

n — arc cos n 7
0—n% -

(6.100)
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As follows from (6.95) the quantity = satisfies the inequality 0 <7l Itis
easily seen that the probability density w(8,)6) increases monotonically and bound-
lessly as v approaches unity.

At fixed interval <t the maximum of the quantity M and, therefore, of the condi-
tional probability w8, {#) occurs at cos(f —- 0, —f) =1, which corresponds to the
condition

=6, +B =86, 4 w,r. (6.101)

Expression (6.101) gives the most probable value of the phase 0, if at the
time moment taken as the beginning of reading the phase were 0,. From the right-
hand side of (6.101) a multiple of 2= was excluded, since, at 1 =0, it is natural to
require that § =9,

As the cosine is an even function, deviation of the phase 6 from its most
probable value (6.101) causes a decrease of the probability density w(0.|0), which
is independent of the sign of this deviation. Thus, the conditional distribution of the
phase § has an axis of symmetry, in a position defined by (6.101).

Therefore, expression (6.101) gives at the same time the mathematical expectation
of the phase at the moment T, whence follows that the vector representing the ran-
dom process rotates in the mean with the angular velocity w,.  This conclusion

agrees fully with the notion of the noige voltage at the output of a selective system
being an oscillation of frequency wy, With amplitude and phase changing at random.

We find the height of the maximum of the conditional probability density from
(6.100) by substituting =1y

X — arc €os ¢

wmx(ﬂ‘]e)=%[l+¢ Ve (5.102)

At small values of ¢ the envelope ¢(t) of the correlation function of the in-
stantaneous noise voltage is near to unity and the probability density Wax (0, ] 6)
is large. This means that the possible values of the phase § are mainly concentrat-
ed near the most probable value (6.101), i.e. , the dispersion of the phase is insig-
nificant. As « increases the height of the maximum drops and the distribution be-
comes diffuse—~the dispersion grows. At t— 00 we have $(x) = 0 and the distri-
bution of the phase becomes uniform:

Wrnax (0,|0)=W(0)=—%. (6.103)

It was assumed above that the phase ¢ and 0‘ are random variables with pos-
sible values between zero and 27, Inthe expression(6.100) for the conditional proba-
bility this corresponds to fluctuations of the phase § about its mean value within the
limits of —®and 4 ®. Since the selective system is completely indifferent to the
phases of the oscillations oce urringinit, the phase candeviate arbitrarily far and with
any probability from its mathematical expectation. The applied method of analysis
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§32. Statistical Dependence Between Envelopes «f Noise Voltages
at the Outputs of Two Selective Four-poles wita their Inputs
Connected in Parallel

The solution of this question is of interest in cases -vhere the outputs of two
selective four-poles, with their inputs connected in parallzl, are connected to detec-
tors whose output voltages are added together in some wey. Such systems are of-
ten encountered in FM discriminators of radio receivers, which are usedforauto-
matic frequency control of the heterodyne and also for racio reception of frequency-
modulated oscillations. The rectification of voltages from the outputs of two selec-
tive four-poles and their subsequent addition is also encountered in diversity recep-
tion, where, toovercome fading, the reception is simultaneously done by tworeceiv-
ers, tuned to different frequencies, whose signals are ardded together after
detection.

In order to avoid cumbersome calculations only a s'mple particular case will
be considered below, in which the four-poles, tuned to the frequencies ml and gy

respectively, have similar transfer characteristics of the form shown in Figure 22.
We recall that by the transfer characteristic of a selecti’e system we mean the
law of steady state of the amplitude of its output voltage upon instantaneously
switching on a sinusoidal input voltage of unit amplitude.

The envelope of the impulge characteristic is the time derivative of the trans-
fer characteristic and has in our case a rectangular form (Figure 23). The high-
frequency complement of the impulse characteristic has the same frequency as the
natural frequency of the selective system, as was already shown in §30. The phase
of this complement is not essential for the following. We can write, therefore, the
equations for the impulse characteristics of four-poles a- follows:

Ko

- sinot (0Lt Ka), (6.104)
EI(‘)=\ 0 > a),
Kosinwt  0<t<0), (6.105)
0= ¢ >a).

The noise voltage at the common input of the four -poles will be supposed to
be uncorrelated. We shall analyze the statistical depender ce between the envelopes
at one and the same time moment. This allows to compu:e the mean square of the
noise after addition at the outputs. If the spectrum of th2 resulting noise is also of
interest, then one has to examine also the statistical dep:ndence between values of
envelopes separated by some interval 1. Such a generalization does not present
substantial difficulties.

The projections on the coordinates of the vectors -epresenting noise voltages
at the outputs of the four-poles are by analogy to (6.22) ind (6.24)

a
w= [ us 0 B sinwtat, (6.106)
"a
v, = f Uin (t)-—’;‘l cosw, ! dt, (6.107)
v
]
uy= [ i 1) Ko gin wgt at, (6.108)

o
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v=f u, () % coswyat. (6.109)
o
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Figure 22. Transfer characteristic Figure 23. Impulse characteristic
of a single selective four- of a single selective four-
pole pole

As already established in §30, the random variables u, and v, can be consid-

ered as statistically independent. The same applies to the variables u2 and v2.

We calculate the mixed moment for the projections uy and u, with the help of

equation (6.26), assuming in it T = 0 and considering that o — 0, | <& 0y 4,

a
1 K} sindua
(6,uy) . ~— ’
m, —-Sf?smm,lsinw,!dt,\,gsﬁ———h . (6.110)
L
where lw = w; —uw,. If we put Aw = 0 then both four-poles become identical, and

(6.110) gives the value of the mean square of the noise at the output of each,

1 K}
m;“"‘v’=02=_2. T“' (6.111)
The correlation coefficient between the projections u, and u, is equal to
p“lu'_—'_—SIZ—::—a. (6.112)
Analogously, we find:
o 3
. K3 1 K} stnAwa
(g ¢ 0 —~ 0
my -Afﬁcosm,tcosmgldl,\,? Iyt (6.113)
v
i.e.,
Pr,u, == Pu,u,e (6.114)
For the projections u_ and v, we have;

1 2
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L 3
Ks 1 K2 | —cosdea
m;u.»':Sf-a—:sin w,f Cos wyt dt 2 — -,-S-;; v , (6.115)
°
whence we obtain:
1 —cos dwa
Pn.'.='—'__—".¢ . (6.116)

The expression for the correlation coefficient betwren the projections u,

and vy has the form:

1 —cos Aea
P, = ——3 5~ (6.117)

After having found all correlation coefficients between all projections we
have to make the calculations analogous to those of §30. The determinant D {6.60)

has in the present case the form

1 0 sin x _l—cosx
x x
0 1 1—cosx snx
D= * * (6.118)
sin x 1 —cosx
r —_— 1 0
1 —:os.r sin x 0 1
where x == Ama. The computation of the determinant (6,11¢) gives
D=[l - %(l —cosx)]z. (6.118)
The algebraic complements of the determinant (¢.118) are
2
D"=D”=Du=D“=|—-;,(I—COSX), (6.120)
D -_-:D = D = ==,
12 21 34 (1] l ) (6.121)
Dy =Dy =D, =D =—ﬂ£[|—-—|—cou]
13 31 D‘N 43 x xj( ) ’ (6.122)
D,=D, =—D;y=— D,,———l"_;'ﬂ[l-—:}(l —cosx)]. (6.123)

Using equalities (6.119) to (6.123), we can write down the four-dimension-
al probability density of the projections, in accordance wih (6.59) as follows:

1 \,
4:"0‘[1 ——%(I — cos x)] -

! P T
209[1—%(]—:0::)] ‘u|+ '+"’+ '

w(u, v, Uy V)=

Xexp[ — (6.124)

sin x | —cos x

- 2[—‘,- (uyu; + 010 + r (“l"a—"l“:)]”-
The characteristic function of the two-dimensional probability density for the

amplitudes U1 and U2 is expressed analogously to (6.68). By introducing new vari-

ables

uy=U,sind,, v,=U,cos0,, uy=U,sin8,, v,=U,cos0, (6.125)
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we obtain A(z,, :‘)-ffexplj(z‘ur—FZ:U:)“ U(I|U_?,Ti X
0

X exp [—20’(;—¢')(U§+U:)]dul dU, X

2% 2n
6.126
xffexp[a—,tl—ul%'f,—)cos(ol—ﬂ,—ﬁ)dﬂ. d8,, ( )

09
where
__8in(x/2) sin(Awaf2)

b==r Boa2 (6.127)
B = arctg ! —cos x _;lzo: £, (6.128)

The characteristic function (6.126) has a completely analogous form to the
expression (6.70), This allows to write down without further calculations the two-
dimensional probability density for the amplitudes U1 and Uz, by analogy with

(6.75):

o 17 N
W, [ 'PUlzl p[ Uty ,]. (6.129)

w, Uz)=¢4(|_*r) o T ¢y &% TIHa—m
As in (6.75), the obtained formula shows that at ¢ — 0 thetwo amplitudes be-
come statistically independent of each other. In the present case, it follows from
(6.127) that this occurs at Aw — 00 or ata —+co, i.e., either for unlimited in-
crease of the difference between the two frequencies w, and w, orfor unlimited con-

traction of the frequency bands passed by both four-poles (as known, the pass band
width of a four-pole is inversely proportional to the settling time a).

The identity of the expressions (6.75) and (6.129) allows to use for the com-
putation of the mixed moment of the amplitudes U1 and U2 the exact formula (6.79)

as well as the approximations (6.83) and (6.84). It follows from the latter, from
(6.46) and from (6.127), that the correlation coefficient between the amplitudes U

1
and U2 is approximately equal to
sin (Awa/2)]2
p,,%[—AaT/ ’] . (6.130)

Let us examine the change in the correlation coefficient with increased
detuning between the four-poles. For this purpose we shall examine the graph of
Figure 24, It Is seen that the correlation between the envelopes of the noise volt-

ages vanishes practically (p,, < 0.05) at Ama}-g-n. i.e., at

a-8f> =083, (6.131)

If it is taken into account that the settling time and the pass band AF of a
selective system are connected by the approximate relation

g-AFx~1, (6.132)
it is easily seen that condition (6.131) is to be spectrally interpreted as a

detuning in which the two four-poles block non-overlapping bands from the input
noise spectrum.



If the two four-poles are terminated by ideal detectars (in the sense of § 30)
whose output voltages are connected in opposition (accoréing to the polarity of the
d.c. components of these voltages) then the mean square of the resulting noise volt-
age becomes, in accordance with (6.46) and (6,131):

Acg\ 12
s (=5%)
“:'ezs"—= O: + °:-29n°1°: =0.860%) 1 — (6.133)

Awa
7
mPn
.
as a,=a, —t— —
\
as
\
04
\
2 \ _
o n an Jn on

adw

Figure 24. Graph of the normalized correlation function
for noise voltages at outputs of four-poles

This expression showe that the mean square of the resulting noise varies as
a function of the product Awg between zero and 0.8662.

§33, Statistical Properties of the Voltage Envelope at the Output
of a Selective System Under Action of N nmodulated Signal
and Fluctuation Noise

We return to the problem considered in §30 and add to it the following condi-
tion. We assume that the selective system is acted upon by the fluctuation noise
as well as by a nonmodulated oscillation of amplitude U, and of frequency equal to

the resonance frequency of the generator. This case was also analyzed in the
publications cited in the above -mentioned section,

As far as the instantaneous values of the voltages and currents are concerned
the system is linear, and, by the principle of superposit:.on, the random and the regu-
lar processes, which take place in the given case, can je analyzed independently.
But, as had been already shown in §30, the problem of he envelope is nonlinear,
and therefore the nonmodulated oscillation signal and the fluctuation noise must be
considered together.

Let us find the one-dimensional distribution of th: envelope of the output volt-
age. As was shown in §31, all phases of the noise volt.ge vector are equally prob-
able. In other words, the projection plane uv has complete radial symmetry.
This allows to rotate arbitrarily the axes of u and v, preserving, of course, their
mutual perpendicularity. For the present problem it i3 convenient to orientate the
u axis along the vector U  of the signal and the v axis prrpendicular to it. Then the
length of the resulting vgltage vector can be written as
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U=V U+ upP+ v (6.134)

Applying formula (6.34) for the two-dimensional probability density of the
projections u and v and the general expression (6.33) for the characteristic
function, we obtain:

e | e
A= eR VAP~ o i gy gy (6.135)
2n0?

We introduce new integration variables U and 8 , connected with u and v by
the relationa

Ut u=Ucosh;, o=1Usinb. (6.136)

Then the characteristic function (6.135) becomes
- -]
A@)= fe#”%e' ¥ qUu [ e T an. (6.137)
Q

By calculating with the aid of the formula (6.71) the inner integral of (6.137)
and combining the obtained result with (6.38) we obtain:

v od
w(U)=.‘§/u(U_U°)c' o (6.138)

In the absence of a signal (Uo = 0) and since 10(0) = 1, the expression (6.138)

transforms, as expected, into (6.39). The other extreme is the case of very strong
signals. It is clear from geometrical considerations that for very large values of
U0 it is not essential to account for the projection v. It follows, that in this case

the difference U—-UO coincides with the projection u, and therefore

W)= ¢ W, (6.139)

Y 23

This result can be also readily obtained from (6,138) by the use of the asym-
ptotical expression for the Bessel function

Iy(x) =~ (6.140)

(1‘
Yorx'
Let us find the mean value of the amplitude U, or, which amounts to the same,
the d.c. component of the voltage at the output of the ideal detector, connected to
the output of the selective system:

o ’+03
Eo_=M|U]=fU°—L:I‘,((Lg-")e- = qU. (6.141)
[1]

For the computation of the integral (6.141) we shall use the formula

113



o«

n 2 q* ] °Y
Xt crege = L2 em{, LY L LT, (2 [id }
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This formula is obtained, if both 8ides of the equation

- "'
b _ 1 r "8 f q?
J/ Lgnerdx=g} e ¥ Io(%;). (6.143)

are differentiated with respect to p.

This is given in the monograph by R.O. Kus'min /4 1/ which deals with the
theory of Bessel functions. In view of (6.142) equation (6 141) assumes the follow-
ing form:

L TR O AR vt U2
o T () B () (D)) e
or, in view of (6.42) we obtain

= —e ‘.{’o(—;—')-i-n’[lo(l;)-k n (B (6.145)

wheren = Uo/lfizis the ratio between the effective voltag:s of signal and noise at

the output of the selective system.
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Figure 25. Dependence of the dimensionless rectified voltage
on the signal-to-noise ratio at the
input of the detector

The graph of the relation Eo,/E_ = f(m) correspoading to formula (6.145),

is given in Figure 25. It is evident from the graph that : low signal (<€ 1) has no
substantial influence on the magnitude of the detected vo tage, which is essentially
determined by the noise. On the other hand, with strong signals(n =>> 1), the pre-

sence of noise has little effect.
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Expression (6.138) makes it also possible to calculate the mean square of the
resultant amplitude U and the mean square of its fluctuation component,

§34. Statistical Propertlies of the Voltage Phase at the Qutput
of a Selective System under Action of a Nonmodulated Signal
and Fluctuation Noise

In the foregoing section the relations (6.136) introduced the random phase

flas the angle between the resultant vector U and the signal vector UO' This angle
is expressed by the random projections u and v as follows:
6= arctg — (6.146)
Uo + u °

Let us examine the statistical properties of the phasetd. In view of expression
(8.34) for the two-dimensional probability density of the projections u and v the re-
lation (6.33) for the characteristic function can be given the following form:

v

+60
A(z)=ff exp[jzarctglf_ﬁ]rz—:;ie = dudv. (6.147)

By replacing the integration variables in accordance with (6.136) we obtain:

v
p e o ot _U'-!UU. eond
A= fef"de‘2 5 er = du. (6.148)
(1)

R

For the computation of the inner integral of (6.148) we use the formula

fromua Gl g B

[

where {'(2) is the error probability integral:

=
2 dx. (6.150)

x
2
Oz =-—f¢
(2) e
o
Formula (6. 149) can be obtained from the tables /6/

fe-r‘t‘*wdx=-‘;—}¢$[l+d»(2lp)]. (6.151)

v
by differentiating both sides with respect to the parameter q.
In our case

! g="cos9, (6.152)

=3z’ .

and the application of formula (6.149) gives for the probability density of the phase
w(#) the following expression:
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w(f) = Ve { % + ncos Bt {| 4 & (- cos 6)|}. (6.153)

As in the foregoing section, we have n=Uy/V 2a.

We note that at y = 0 (no signal) the expression (6.153) transforms into (6.90).

Figure 26 shows curves of w(0), constructed from {6,153) for different values
of the ratio 7. It can be seen from this graph that the increase of the signal amp-
litude results in a concentration of the most probable values of the phase around § = 0.
This means, that under the given conditions the phase of ihe resulting oscillation is
to an ever increasing degree determined by the phase of tie signal.
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Figure 26. Graphs of the probability density «f the phase for
different signal-to-noise ratios

$ 35. Computation of the Detector Output for Given Statistical Properties
of the Applied Voltage Envelope

It was shown above that the examination of the statistical properties of the
voltage envelope at the output of the selective system gav=2 at the same time equiva-
lent results concerning the statistical structure of the vol-age at the output of an
ideal detector. If the distribution law of the envelope is known, it is easy to cal-
culate also the detection effect for the most varied forins of the volt-ampere
characteristics of an inertialess detector. For this we h&ve to know the relation
between the mean current value in the detector circuit and the amplitude of the ap-
plied alternating voltage. We call this relation the detec’or characteristic.

We shall consider first a detector with an exponential volt-ampere character-
istic, as expressed by the equation (6,1). If a harmonic voltage

u=Ucoswt = U cosa, (6.154)
is applied to the detector, then the instantaneous current through it becomes
{ = jggoU ose, (6.155)

By averaging this current over one cycle of the ilternating voltage, we
obtain the mean value of the current in the detector circuit:

= 2
Iav='%‘f‘dﬂ=£f¢“”°""da. (6.1586)
o ¢
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We apply the formula (6.71) for the calculation of this integral and obtain the
equation for the detector characteristic:

Jiy=Jdo - lp(al)). (6.157)

Let the detector be connected to the output of a selective system under fluctua-
ting input. Then the one-dimensional probability density of the voltage amplitude
at the detector is by equation (6.39), and the constant component of the current
in the detector circuit can be calculated with the aid of (5.20), in which we
have to put y—1:

@ U‘
I =f1,./,(aU)-g-¢ =4y, (6.158)
-]

We can compute this integral by representing the Bessel function /,(u{") as

a power series (6.15) andthen, with the aid of formula (6.44), integrating by parts
the thus obtained series in the integrand. Then simple transformations give :

by =4 i L (‘—';f)m = Joe% -~ (6.159)
m=0

i.e., a result coinciding with the expression (6.6),

By analogous methods we can calculate moments of higher order for the mean
current, and obtain, for instance, the formula (6.16), Of course, such a calculation
method is, in principle, unsuitable for the analysis of the statistical properties of
the instantaneous current in a detector circult, as this current consists not only of
the slow-changing mean current but also of rapidly changing high-frequency compo-
nents. Inmanycases, however, these latter are of no interest. We shall make use
of the same method for the investigation of the statistical properties of the mean
current in a square-law detector, whose characteristic is given, as well known,

by the equation
Joy = Jo+ aU (6.160)

Using formula (5.20) at v=1 and assuming, as before, that the probability
density w(l/)is expressed by (6.38), we obtain,

y »
Jay =f(!0+aui)ge'§du. (6.161)
']

Now, the application of formula (6.44) gives
Jiw = b+ 2a0%. (6.162)

We note that this result could have been obtained by averaging both sides of
equation (6.160) and taking into account that in the case under consideration the
mean square of the amplitude U is determined by the formula (6.45).

By an analogous method it {8 simple to compute the mean square of the cur-
rent J__ . Setting in (5.20), v==2, we obtain:
av o e
G= [ Ut arpde=a. (6.163)
°



By representing the integral (6.163) as a sum of three integrals and by apply-
ing to each of them formula (6.44), we obtain

o}, = S5+ 4aJy’ + 8a'c". (6.164)

The mean square of the noise component of the mear current is, by virtue of
(6.162) and (6.164)

c: = '2,“ —_— .IZV = 4a%°, (6.165)

The mixed second moment of the mean current can be calculated, using ex-
pression (5.24) and formula (6.75) for the two-dimensional probability density of the
envelope. In this case one encounters somewhat greater computational difficulties
then those above,

The monograph of V.I. Bunimovich f4/ analyzes betide the problems consid-
ered above, a number of other analogous problems. The case of a broken line
characteristic of the nonlinear element under normally listributed input is
examined in the work by I.N. Amiantov and V.I. Tikhotov [42/.
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